

A multi-level Thermal Comfort Assessment (TCA) to identify and mitigate heat stress risks in urban areas

Author(s)

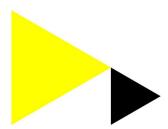
Spanjar, Gideon; Kluck, Jeroen; Erwin, Stephanie; Schramkó, Sába; Föllmi, Dante; Bartlett, Debbie

Publication date

2022

Document Version

Final published version


License

Unspecified

Link to publication

Citation for published version (APA):

Spanjar, G., Kluck, J., Erwin, S., Schramkó, S., Föllmi, D., & Bartlett, D. (2022). *A multi-level Thermal Comfort Assessment (TCA) to identify and mitigate heat stress risks in urban areas*. 800-801. Abstract from AESOP Annual Congress, Tartu, Estonia. https://aesop2022.eu/en/abstract-book/

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the library: https://www.amsterdamuas.com/library/contact, or send a letter to: University Library (Library of the University of Amsterdam and Amsterdam University of Applied Sciences), Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Tartu 25.-29.07.2022 AESOP ANNUAL CONRESS Space for Species: Redefining Spatial Justice

BOOK OF ABSTRACTS

85065

A multi-level Thermal Comfort Assessment (TCA) to identify and mitigate heat stress risks in urban areas

Gideon Spanjar; Kluck, Jeroen; Erwin, Stephanie; Schramkó, Sába; Föllmi, Dante¹; Bartlett, Debbie²

¹AUAS

²University of Greenwich

The liveability of cities worldwide is under threat by the predicted increase in intensity and frequency of heatwaves and the absence of a clear spatial overview of where action to address this. Heat stress impairs vital urban functions (Böcker and Thorsson 2014), hits the local economy (Evers et al. 2020), and brings risks for citizens' health (Ebi et al. 2021). The ongoing densification of cities may escalate the negative consequences of heat, while rising climate adaptation ambitions require new pathways to (re)design public places for a warmer climate. Currently, policy makers and urban planners rely on remote sensing and modelling to identify potential heat stress locations, but thermal comfort models alone fail to consider socioenvironmental vulnerabilities and are often not applicable in different countries (Elnabawi and Hamza 2020).

In the Cool Towns Interreg project, researchers collaborated with municipalities and regions to model urban heat stress in nine North-Western European cities, to find vulnerabilities and to measure on the ground (see Spanjar et al. 2020 for methodology) the thermal comfort of residents and the effectiveness of implemented nature-based solutions. Using the Physiological Equivalent Temperature (PET) index, several meteorological scenarios were developed to show the urban areas under threat. The PET maps are complemented by heat vulnerability maps showing key social and environmental indicators. Coupled with local urban planning agendas, the maps allowed partner cities to prioritize neighbourhoods for further investigation. To this end, community amenities and slow traffic routes were mapped on top of the PET maps to identify potential focus areas.

A comparative analysis of the collated maps indicates certain spatial typologies, where vital urban activities are often influenced by heat stress, such as shopping areas, mobility hubs, principal bicycle and pedestrian routes. This project has resulted in the development of a multilevel Thermal Comfort Assessment (TCA), highlighting locations where vulnerable user groups are exposed to high temperatures. Standardized for European cities, it is a powerful tool for policy makers and urban planners to strategically identify heat stress risks and prioritize locations for adapting to a changing climate using the appropriate nature-based solutions.

Keywords: Heat Stress, Climate Change Adaptation, Physiological Equivalent Temperature (PET), Heat Vulnerabilities, Nature-Based Solutions

References

Böcker, L. and Thorsson, S. (2014). Integrated Weather Effects on Cycling Shares, Frequencies, and Durations in Rotterdam, The Netherlands. 6, (4), 468-481. doi: 10.1175/WCAS-D-13-00066.1

Ebi, K.L. et al. (2021). Hot Weather and Heat Extremes: Health risks. The Lancet, 398, (10301), 698-708. doi: 10.1016/S0140-6736(21)-1208-3

Elnabawi, M. H., & Hamza, N. (2020). Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere, 11(1), 51. doi: 10.3390/atmos11010051

Evers, D., Slob, G., Content, J. and Dongen, F. (2020). Veerkracht Op De Proef Gesteld: Een verkenning van de impact van corona op binnensteden. Den Haag: Planbureau voor de Leefomgeving.

Spanjar, G., van Zandbrink, L., Bartlett D. and Kluck, J. (2020). Cool Towns Heat Stress Measurement Protocol: Thermal comfort assessment at street-level scale. Amsterdam: Amsterdam University of Applied Sciences. https://www.cooltowns.eu