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This is my father, Jan Piersma (1930-2016).

He owned a car repair store for almost 50 years. He had no computer system
for inventory, no cash register and no customer relations system. When asked
for a spare part from a motor block Vauxhall model 1972 he would immediately
respond, “Second aisle left, top shelf, next to the model 1968.”

He based his business decisions on knowledge and insight: “Do not take in the
Toyota models for spare parts, but do so take them for the Volkswagen; they
always break.”

He memorized it all. Now, the digital society is here.






Introduction

Large cities provide an exciting and creative environment but are also perceived
to be expensive and congested. Cities host tech innovations, startups and (new)
business development. They are also known for their busy streets, pollution,
loneliness, and crime. Citizens may demand good city services, inexpensive and
accessible health and school facilities, and political and social engagement. The
challenge that cities face is to realize livability, social cohesion, efficient public
services, economic growth and prosperity in a compact urban space.

Data has been collected for centuries, but in recent years technical innovations
have enabled us to collect exponentially growing amounts of data through the
use of sensors, smart devices and other sources. The walls literally have ears, noses
and eyes, and citizens’ movements, moods and interactions are recorded. This
data is used to create an efficient, effective and inclusive environment to guide the
digital transformation of citizens without compromising their privacy.

Mobile devices enable citizens to access data (services) anytime and anywhere.
This development has a huge impact on our physical environment: phone cells,
traffic direction signs and public transport information boards, for instance, are
disappearing from the physical environment and replaced by apps and online
assistance tools. Businesses are strongly affected by the availability of online and
real-time information on their sales, inventory levels, finances and performance.

The digital transformation is an enormous challenge for citizens, companies
and governments, and is having a major impact on daily life. We already rely
on computer screens, historic performance data, trend reports and numerous
other data sources. The rise of smart complex and self-organizing systems may
guide a new level of human decision making, through automated decision making
and systems that adapt to new situations through learning models. We need
explainable, transparent and secure (data) models to include all citizens in this
transformation.

Data analytics and algorithms are at the heart of the complex systems. Artificial
intelligence and machine learning are used for understanding the data and for
decision making. There is a paradigm shift in which insight and knowledge
are constantly fed with data. Simple mechanical jobs are increasingly guided
by online manuals and real-time diagnostic technology. We use calculators for
basic calculations, and without a TomTom we would be lost before reaching the
end of our street. We rely on algorithms for route planning or selecting a new
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wardrobe, and use automatically generated recommendations for choosing or for
recommending a Netflix series that we may like.

Artificial intelligence is being introduced to support human intelligence. On
multiple applications the artificial intelligence has shown to be superior to the
human decision making. Can we control the artificial brain, or are we (as humans)
becoming the future work drones for artificial intelligent systems?

This book is both an introduction to the world of Big Data and Smart Cities, and an
assessment of the role that data analytics is playing in the digital transformation
in our cities. The book is complemented with MOOCs, references to other online
courses and technical reports for people new to this field (see www.hva.nl/
urban-analytics). The chapter “Urban Analytics” discusses the activities of the
Urban Analytics Research Group, with examples that explain the possibility to
combine academic and applied research.
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1 Data in Urban Environments

There has been data since the beginning of mankind. It has been used to count
the number of people and animals in a community or to keep track of economic
transactions and possessions. “Data are the raw material produced by abstracting
the world into representational forms: numbers, characters, symbols, images,
sounds, electromagnetic waves, bits and so on in order to categorize and measure
it” (Kitchin, 2014).

Only through an ordering of the raw data into ordered facts does data becomes
meaningful and capable of being used to create understanding. Data as a means
to communicate information can add understanding, to create knowledge:

+ | better stop the car!

* The traffic light | am driving
towards has turned red

Knowledge Context

* South facing traffic light on

Info rm at i on Meaning  corner of Pitt and George

Streets has turned red
* Red, 192.234.235.245.678,
Data = =

Figure 1  Wisdom-Knowledge-Information-Data Pyramid’

Raw data is the collection of low-level information units such as sensor readings,

but it can also be a photo or the (geo-)location of a tree. From the raw data the

information is derived by aggregating the facts through:

— (Subcategory) counts and measures

— Scaling and normalization (relative measures, counts per unit)

— Statistical (descriptive) analysis (averages, standard deviation, anomalies,
outliers)

This aggregated data loses the information of the individual records but gives an

overview of the information in the raw data. To make use of the data, it needs to
be accurate (Kitchin, 2014):"Good quality data are discrete and intelligible (each
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datum is individual, separate and separable, and clearly defined), aggregative (can
be built into sets), have associative metadata (data about data) and can be linked
to other datasets to provide insights not available from a single dataset.”

Data collection

Communication devices and the internet cause humans to produce enormous
amounts of structured and unstructured raw data streams consisting of messages,
pictures or geo locations. Smart devices, such as Fitbit trackers, TomTom, and
mobile phones also track the activities and the whereabouts of their users.

The use of technical systems (sensors, cameras, and so on) for data collection
is an emerging field. With the ability to gather data with smart devices, we can
overcome cumbersome human counting processes (cars that pass a street, people
in a room). Counting tends to be done for short intervals, is time-consuming
and prone to error. Professional counting bureaus increasingly use automated
data collection. Combined with the use of smart algorithms, for instance artificial
intelligence algorithms for image recognition, they can program the raw data
(images) into the required data (for instance, the number of cars that pass a street).

Other techniques include web scraping, where data is collected from websites.
Open data sets are shared through an application programming interface (API)
that allows programmers to import data directly into a data analytics environment.
These techniques are publicly available, they improve the computational power of
projects, and enable analysts to combine data from different sources in order to
find relationships, correlations and causality in the data projects.

Big Data

The amount of (raw) data that is produced is growing exponentially and is denoted
as BIG DATA. In 2013, it was estimated that the amount of data produced
each day was 2 exabytes (10'® bytes, IBM, 2017). Big data are large volumes of
heterogeneous data that have hidden structures that need to be extracted. The
value of the information may hold only for a short time and is found only in
fragmented small subsets of the data. For instance, the measurement of passing
vehicles in a street to detect traffic jams is of interest only in the local environment
and only during rush hour.

12 NANDA PIERSMA



Figure 2  Data volumes

The “"Age of Big Data” is characterized not only by large volumes, but also by

other characteristics (Bahrami, 2015).

Volume indicates a very large volume
of data.

Velocity indicates the speed for data

processing in terms of response time.
This response time could be a batch,

real-time or stream response-time.

Variety indicates heterogeneity in data
that we have collected for processing
and analysis. This data variety includes
structured, unstructured and semi-
structured data.

Veracity is the accuracy of the data.
For example, a sensor that generates
data can have an incorrect value that
does not provide accurate data.

Value of data refers to the information
that can be extracted from data.

Viability means that the data should
be filtered to find the most relevant
factors and attributes and to detect
hidden relationships in data.

Figure 3  Characteristics of Big Data?
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High volumes of structured data can be stored using traditional relational
databases (SQL). Big data sets such as text documents with no inherent structure,
images or videos can also be NoSQL (Sakr, 2016).

Societal impact of data

The societal impact of using data has three important elements: privacy, security
and responsibility.

Privacy is a person’s right to be unobserved and uncontrolled by third parties.
Data sets that reveal information about an individual, or data sets that can be
combined in a way that allows that individual to be identified are allowed only
with the explicit permission of each individual in the dataset. The new European
General Data Protection Regulation (GDPR) will take effect on May 28, 2018.
The GDPR brings a new set of digital rights for EU citizens in an age when the
economic value of personal data is increasing in the digital economy.

The bulk collection of telephony metadata in the United States under the USA
Patriot Act in 2013 (USA, 2013) metadata caused a debate about individual privacy.
According to the Act: “This information is limited to telephony metadata, which
includes information about what telephone numbers were used to make and receive
the calls, when the calls took place, and how long the calls lasted. Importantly, this
information does not include any information about the content of those calls—
the Government cannot, through this program, listen to or record any telephone
conversations.”

In the Netherlands, there is also a misconception about privacy-preserving
metadata or data that can be traced backed to individuals. The 2017 Dutch Privacy
Authority (Autoriteit Persoonsgegevens) identified data breaches at Airbnb, Uber,
WHOIS data, Microsoft and Facebook.?

Security of (personal) data is of utmost importance to preserve privacy. Data
ownership should be clear, and the owner should take sufficient measures to
protect the data. Numerous stakeholders can breach data security: datacenters
and platform owners (through the use of cryptography on the data, secured
ports, firewalls, data management protocols with permissions and passwords),
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service providers (data management) and users of the services (passwords).
Cryptography of the data can secure forbidden or unwanted access to data (in
storage or in use). Since the days of Alan Turing, people have been trying to break
the codes of cryptographed data (Hodges, 1983).

Hacking is done in two ways: by breaking into the datacenter (through an
insufficiently secured port, cracking the coded data) or by using permissions and
passwords of one of the users to access the data. Systems are most vulnerable to
social hacking, with people sharing passwords, service desks that share passwords
over the phone, people showing passwords on desktop screens, leaving laptops
accessible, and so on. In addition, malware and phishing emails sent to end users
can infect computers with software viruses that take control of them. Some of
this software is programmed to send huge amounts of data to online platforms
so that they block access to the platform (DDos attacks). This software does not
hack the platform itself but disrupts it by preventing access.

New discussions in the data field relate to responsible or FAIR (Findable, Accessible,
Interoperable, and Re-usable) data and FACT (Fairness, Accuracy, Confidentiality,
and Transparency). The scientific approach to responsible data focusses on four
research questions (Aalst, 2017):

Table 1 FACT
fairness data science without prejudice — how can we avoid unfair conclusions
even if they are true?
accuracy data science without guesswork — how can we answer questions with

a guaranteed level of accuracy?

confidentiality | data science that ensures confidentiality — how can we answer
questions without revealing secrets?

transparency data science that provides transparency — how can we clarify answers
so that they become indisputable?

Responsible data science is one of the foundations of the digital transformation.
Customers, patients, citizens and other stakeholders should be able to understand
the purpose and the use of the data models in order to trust the outcomes “Rather
than to avoid the use of data altogether, we strongly believe that data science
techniques, infrastructures and approaches need be made responsible by design”
(Aalst, 2017).
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Smart Cities frameworks

The purpose of using data for city services is to reduce costs and resource
consumption and to allow for effective and efficient city services while engaging
citizens in their social living environment. Using data for this purpose can enhance
the understanding of city service process, enable efficient decision making and
create transparency about the drivers of city services. It has been estimated that
cities generate more than 4.1 TB/day/km? of urbanized land area (Ciobanu, 2014).

Categories of data in urban context are

Table 2 Urban Data

General information Registration records about citizens, companies and government
organizations.

Infrastructure of a city | Houses and environments, transportation systems, geography,
energy and water systems, green spaces and public spaces, air
pollution monitoring, garbage collection, nature.

Living Health, safety and security, education, income and expenditure,
leisure and culture, tourism.

Economics and politics | Labor market, social services, price levels, elections, city
(economic) investments.

Citizens' data Social media (Twitter, Instagram, Facebook, Snapchat),
customer relations (online shopping, subscriptions), GEO
tracking (such as Facebook check-ins).

Urban data sources are available to citizens and other shareholders. Many open
datasets are available (https://data.amsterdam.nl/, www.cbs.nl) from public
and private sources. The City of Amsterdam is frontrunner in the collection and
publication of CITY DATA.

Equally interesting are real-time data, such as cameras and sensors that track
citizens’ movements by car, bicycle or on foot, or that monitor air and water
quality. Real-time data is used for monitoring and detection. This data typically
holds all characteristics of big data such as veracity, volume and variety. Real-time
data can be used only with the appropriate technical infrastructure support.

In an IBM corporate document (Harrison, Eckman, Hamilton, Hartswick,

Kalagnanam, Paraszczak, 2010), a Smart City is an “instrumented, interconnected
and intelligent city.” Instrumented refers to the capability of capturing and
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integrating live real-world data through the use of sensors, meters, appliances,
personal devices, and the like. Interconnected means the integration of these data
into a computing platform that allows the communication of such information
among the various city services. Intelligent is the inclusion of complex analytics,
modelling, optimization, and visualization services to make better operational
decisions.

The Smart City builds upon the combination of improved data storage capability,
enlarged computational power and the availability of advanced data collection
devices. It comes to life, however, only through data analytics and data-based
service providing.

Urban computing is an interdisciplinary research field in which ICT systems, loT
systems, mathematical modelling and data are used to resolve the issues in an
urban setting.

Service Providing
Improve urban planning, Ease Traffic Congestion, Save Energy, Reduce Air
Pollution, ...
Urban Data Analytics
Data Mining, Machine Leaming, Visualization
Urban Data Management
‘a|\.ll|l» runporal Index, ‘3"“.‘\“\ Ir-\Jm. tory. and Graph Data Management..
Human Air Meteorolo  Social Road ¥
| mobility Teaftic (_Ju ality =y Media Enogy Networks POls
Urban Sensing & Data Acquisit
Participatory Sensing, Crowd Sensing, Mobile

Figure 4  General framework of urban computing (Zheng, 2014)

Urban computing connects urban sensing, data management, data analytics, and
service provision to improve the quality of life, city operation systems, and the
environment. Governments and industry take the lead in implementing urban
computing services and applications.
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From a holistic view, a city functions better when urban computing becomes a
public utility, just like water, electricity and other utilities. A City Brain uses data to
create a centralized dashboard view of the sensors deployed across a distributed
network in the city. In theory, municipal administrators could use a city brain to
check on a wide variety of conditions detected by millions of low-cost wireless
Sensors.

At a presentation at the 2017 World Al Summit in Amsterdam (Hua, 2017), Alibaba
Al manager Xian-Sheng Hua demonstrated the City Brain as a smart traffic system
for the city of Macau. The data platform constantly monitors citizens and uses
applied Al, deep learning and real-time data analytics to optimize the traffic
streams. The City Brain can be extended to fields such as garbage collection,
parking, safety, or crowd control. It can even monitor social behavior (detecting
loneliness, mental problems, health crises). Singapore is implementing a City Brain
and Cisco is working with ten cities (including Paris and Copenhagen) on the Cisco
Kinetics for Cities, a Smart+Connected™ Digital Platform for monitoring and for
improving operational effectiveness.*

Ranking and Scaling

On a global scale, many cities have the same urban data available, making it
possible to compare their performance. Because cities face growing competition
for investors, qualified employees and tourists, the rankings can reflect the
competitiveness of a city, assist with strategic positioning to achieve city goals and
profiling. Ranking cities may also give an indication of the progress in the digital
transformation of cities. Giffinger (2007; 2010) identifies the six domains of a
smart city:

Table 3 Six Domains of a Smart City (Giffinger, 2007)

Smart Economy Competitiveness

Smart People Social and Human Capital
Smart Governance Participation

Smart Mobility Transport and ICT

Smart Environment Natural Resources

Smart Living Quality of Life

18 NANDA PIERSMA



Using weights for the importance of the indicators in each domain, the score of
cities is calculated for each ranking with a specific focus (such as sustainability,
economic growth).

Many global rankings are published, for instance by IBM, the McKinsey Global
Institute, Roland Berger, EY, and PricewaterhouseCoopers. On a global scale, data
is collected by the UN http://urbandata.unhabitat.org/ providing data about 741
cities with 103 indicators. In the CITYKeys project (Horizon project 2015-2017)
more than 40 EU frameworks for smart city rankings are compared, resulting in a
set of indicators for assessing the success of smart city projects.

Giffinger (2010) distinguishes four types of rankings based on the Acting Institute:
commissioned economy consultancy-based, commissioned expert panels/private
research institutes, magazines and NGOs, and sponsored university or economic
research institutes. The differences in the ranking methodology among these
institutes is characterized in, among others, the quality of documentation,
transparency, and number of cities.

From an academic viewpoint, the principle of scaling in cities is of interest. Are
there universal rules to describe the services in a city in relation to its size? How
does the infrastructure of a city scale with the number of citizens or with the (area)
size of the city? Consider parking: will larger cities need extra parking space at a
rate that grows linear with the number of citizens, or will there be a tipping point
in the size of the city population that makes people choose alternative means of
transportation?

Bettencourt (2013) claims that cities evolve according to a basic set of local
principles. Measures of urban efficiency are independent of the size of the city
(usually measured by a city’s population). This result can tilt the balance between
socioeconomic outputs and infrastructure costs. Van Raan (2015) and West (2017)
show that city infrastructures grow either sublinearly or super linearly with the
population, depending on the purpose.

The introduction of socio-technical systems to support citizens will have an
impact on the city infrastructure and may result in new scaling principles. Smart
technology and digital platforms will enable citizens to use their environment
more efficiently, but each city will adopt smart city technology in its own way.
What drives the adoption of smart technology? Is it possible to find scaling laws
for smart cities? Scaling laws may help to understand both smart cities and the
influence of new technologies on livability for citizens.
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Digital transformation

People are relying on smart consumer products more than ever. Among these are
technical systems, such as smart TVs or smart energy meters. There is the fast-
moving embedding of smart technologies into everyday life. The expansion of the
accessibility and bandwidth of ICT networks and the replacement of traditional
systems by smart systems has given rise to pervasive and ubiguitous computing.

Pervasive computing is the addition of computational power and access to ICT
networks to everyday fixed objects and environments to make them interactive
and “smart” (Dourish, 2001). Ubiquitous computing is the computational power
(such as smart phones) that accompanies a person independent of location and
environment. Ubiquitous computing has been called the third wave in computing;
increasingly the technology will recede into the background of our lives and citizens
are becoming both the owners and the users of the city data infrastructure.

Socio-technical systems involve the interaction of humans with complex
technical systems and infrastructures. The technical systems have a “front end”
for humans and a “back-end” where collected data are shared over the internet
and stored in data warehouses owned by the product companies to be studied
and used. For instance, a smart energy meter provided by the energy company
is used by a homeowner to set the thermostat. The energy company records
the settings to balance the regional use of energy against the supply. This dual
purpose of technical systems is under some scrutiny. The Samsung Smart TV, for
instance, provides a YouTube app on the TV, but does not keep the app upgraded.
People cannot install or upgrade apps on the smart TV. Within a couple of years,
the TV will be less “smart.” Meanwhile Samsung can monitor the use of each TV
for its own business development goals.

One of the goals of research into socio-technical systems is to jointly optimize
technical excellence and quality of life: how does the technology actually affect
the human experience?

There is a paradigm shift where (personal) insight and knowledge are constantly

fed with new data, presented to humans on complex socio-technical systems
(smart devices). The use of digital technology transforms the context for humans.
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The digital transformation is defined by the use of digital technology for the
transformation of business and organizational activities, processes, competencies
and models (Industry 4.0), and its accelerating impact on human society (Society 5.0,
sometimes denoted as “The paperless society” or “The knowledge society”).

The transformation results in a connected city, or rather in connected citizens,
with services that are more cost-effective, have improved planning, improved
designs and faster delivery of transport, and an infrastructure and housing that
ensures a healthy, sustainable, resilient and prosperous living environment.

Data supports Bottom up and Top down processes

Citizens have access to the smart devices and technical systems for their own
benefit and to contribute to society. People can control their own data stream,
with data from apps like Fitbit, Eetmeter, Facebook, and LinkedIn. This is small
data, the mathematical denotation of n=1 (one person). Only if information is
shared by enough people can it be used to study citizens’ behavior from a top-
down perspective. Cooperation and (decentralized) exchange through virtual
communities and social platforms, are typically situated in the not-for-profit sector,
with smart living models and sustainability (Florida, 2017). The data shared on
these platforms can help to start movements, to connect people and to form
inclusive social practices (e.g., stadsdorpen).

Urban data systems under top-down control rarely connect to these social
platforms. The role of collaborative commons in smart cities is underestimated
and not visible enough in the current review of smart cities. If used appropriately,
urban data can help bridge the gap between top-down and bottom-up processes,
whilst helping stakeholders to recognize that cities are complex systems that
operate through various spatial scales of urban form (Grey, 2017).

Critical publications and groups fault the top-down implementation of data-driven
models (O'Neil, 2016). The triple helix models (government, research institutes
and business) should be replaced by a quadruple helix model with the addition
of the collaborative commons as a partner in smart cities projects (Florida, 2017).
Bottom-up initiatives are studied, for instance, by the research group Create IT of
the AUAS, which focusses on citizens’ empowerment, with new techniques to
create inclusive digital platforms.

THROUGH THE CLOUDS 21



2 Computer systems and data processing

The exponential growth of data was possible with the construction of more
powerful computer infrastructures to store, access and process the data. When
we store big data, we need to extract, transport and load (ETL) the data in order
to analyze it and to extract information. Accessibility has a tradeoff with storage;
some storage models use more computer space but provide faster access to
specific data units, where other smaller storage models need more time for data
processing.

The ability to record, store, access and process data in real time is the driver of
the big data age.

When data is too big for our laptop

Traditional computers use a series of logic gates that transform different inputs
into a predictable output. There are three computer architecture dimensions:
storage (the amount of data stored), memory (the amount of data that is active)
and data processing units (the data processing speed).

Computing storage is measured in bytes and computer memory is measured
in RAMs (Read Access Memory). Data processing is measured in numbers of
processing units CPU (central processing unit) or GPU (graphical processing unit)
with the related processing speed MIPS (million instructions per seconds) or
FLOPS (floating-point operations per second). Hardware-accelerated computing
is the use of hardware to perform some functions more efficiently than is possible
in software running on a more general-purpose processing unit. The cost of the
architecture are determined by the amount of storage.

The first computers could store very few characters (Selectron tube 1946: 256 to
4096 bits), and until 1980 the maximum data storage of a mainframe computer
was limited to gigabytes (IBM Model 3380 1980: 2.52 GB). The largest computer
storage machines that can now store about 20 petabytes. Meanwhile the cost
of computers has fallen dramatically. The costs to store 3 TB on a community
computer is now approximately €100; in 2000 it was €33.000 and in 1990
€3.300.000.
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Supercomputers (Scale up)
A supercomputer has a much higher level of computing power than a general-
purpose computer. The first supercomputers introduced in the 1960s were
highly tuned conventional designs that ran faster than their general-purpose
contemporaries. With new capabilities such as vector computing, JIT, quantum
computing and massive parallelization, supercomputers are more powerful than
ever. Other new capabilities include optical and DNA computing.

In June 2016, the fastest supercomputer on the TOP500 supercomputer list was
the Sunway TaihulLight, in China, with a LINPACK benchmark score of 93 PFLOPS
and 20 PB storage capacity.

Active June 2016

Operators National Supercomputing Center in Wuxi
Location ::It]io’n:itiiﬁrcomputer Center, Wuxi,
Architecture Sunway

Power 15 MW (Linpack)

;L_%ting Sunway Raise0$ 2.0.5 (based on Linux)
Memory 1.31 PB (5591 TB/s total bandwidth)
Storage 20PB

1.45 GHz (3.06 Trlops single CPU, 105 PFLOPS

eed
b Linpack, 125 PFLOPS peak)
S Cost 1.8 billion Yuan (U55273 million)

Qil prospecting, life sciences, weather

3 o - Purpose forecast, industrial design, pharmaceutical
N research
N Web site http://www.nscow.cny/wicy w,
Nt A

Distributed computer models (scale out)
Analyzing huge volume datasets use both the “scale up” (building larger computer
systems) and “scale out” techniques. The latter involved the clustering of
commodity machines that act as an integrated work unit; the dataset is distributed
over multiple machines.

Figure 5 Supercomputer

Distribution models are used to split the dataset into data blocks. Traditional
relational databases use metadata as keys to relate SQL databases. Non-structured
data (NoSQL) models are based on block storage, file storage or object storage
principles. Block storage is the lowest level without structure and is related to hard
disks. File storage uses a file directory structure and object storage uses nodes
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that are accessed on meta-data keys. Metadata is the frame of reference that

gives data its context and meaning.

File Directories

Hl

Figure 6a File storage

caal] locaton sddren] oyect®], data: datall, meta: metad]
et dt: dutall, meta: et
e, dta’ Satad] mata: et

Figure 6b Object storage®

All major data storage systems use one of these models: the Amazon EBS is block
storage model; Google file system (GFS) and Hadoop distribution file system
(HDFS) are file storage systems; Amazon S3 and Open Stack Swift are object

storage systems (Wu, Sakr, Zhu, 2017).

Principles that can be used to enhance computing power are faster memory
processing (data to algorithm) or algorithm to data (MapReduce) techniques.

MapReduce is a famous big data solution: split the data set, perform parallel
algorithms on the subsets of data (distributed computer systems) and combine

the resulting output.

INPUT SPLITTING MAPPING

a:2
b:1
c:l
d:3

aabcddd .

a:0
bbeed || b2
c:2
d:1

aabeddd
bbced -
abed

a:l
abcd - bl
cl
d:1

Figure 7
(Hadoop Apache website)
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SHUFFLING REDUCING FINAL RESULT
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MapReduce technique for the word count example

NANDA PIERSMA



New developments for computer infrastructures evolve along the lines of scaling
up and scaling out in combination with alternative use of computer memory and
hardware (Al Ars, 2017):

Until 2005: High-performance machines

Until 2010: Hadoop-enabled distributed storage and processing

Until 2015: Faster in-memory processing Spark, HBase, Hana

Today there are ongoing developments in storage techniques (Quantum, DNA)
and advances in data processing techniques such as JIT (just-in-time compiling),
optical computing, TensorFlow (numerical computation using data flow graphs).

Computer power is said to develop towards the singularity point, a hypothetical
point in the future when artificial intelligence will surpass human intelligence. The
futurist Kurzweil (2006) predicted that computer power will be as powerful as
the human brain in 2020, and reach that of the total human population in 2080.
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Figure 8 Computer power moving to the singularity point (Kurzweil, 2006)

Cloud platforms
Another way to scale out the computer infrastructure is cloud computing, which

shifts the location of the data infrastructure (hardware and software) to more
centralized and larger-scale data centers. Users can access data via the internet
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using thin of flat client platforms (laptops, mobile phones). A second important
feature provided by cloud computing technology is the ability to grow (or shrink)
computing and storage needs on demand. These features allow customers to pay
the infrastructure costs of storing and computing based on their current capacity
of big data and transactions (Bahrami, 2015; Sakr, 2016).

The pay-per-use principle has multiple forms, or “As a Service” components:

Table 4 Cloud Services

laaS Infrastructure as a Service IT infrastructure (servers and virtual machines
(VMs), Storage, Networks, Operating Systems)

PaaS Platform as a Service Platforms for developing, testing, delivering and
controlling software applications

SaaS Software as a Service SaaS enables cloud providers to host software
applications and its IT infrastructure, to perform
administrative tasks for control and maintenance
such as installing software updates and security

patches.
Daa$ Data as a Service (not This is a combination of IT infrastructure, data
Desktop or Diagnostics) cleaning tools and SaaS

Cloud platforms have been used for a decade in Business2Business, enabling
companies to outsource their IT infrastructures, software and increasingly their
services. For example, printers are now on-site devices as part of a “Printing as
a Service” contract that a company has with the printer supplier. The company
does not buy the printers; it buys the print service with a cost structure based on
print volume.

People also intensively use cloud platforms and their services.

Many organizations create their customer relations and support services on
cloud platforms. Customers create an account on the website of the company
and use it to communicate with the company. Chatbots and recommendation
systems enable companies to automate customer relations interactions, enabling
a company to expand without having to invest in its back-end.

People are using cloud platforms for online shopping, to interact with product and
services companies (kitchen appliances support or to make online appointments
with dentists or hairdressers) and for government and public functions (online tax
applications, registration of energy and water use readings).
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Social media platforms such as Facebook, Instagram and Twitter are cloud-based
services where individuals can create an account and use the platform. These
services are free, in the sense that there is no cost to subscribe.

There is some concern about the dominance of the companies that own the
computer infrastructures (Amazon, Google, IBM and Microsoft) and companies
offering social media platforms (such as Facebook, Twitter, YouTube). All of these
companies support the connectivity of multiple dimensions of data that people
are sharing on social media platforms, the customer support platforms and their
private cloud environments, including passwords and personal data. The data
submitted by account users is owned by the platform company, which uses the
data for profiling and advertisements. As the saying goes, “If a product is free,
you are the product.”

Disappearing computer

In the past 40 years, one by one the boundaries of communication were lifted

(Ballon, 2016):

— The “tele” age introduced communication hardware (telegraph, telephone,
television) to overcome distance.

— The "e" age (e.g., e-business, e-commerce) is characterized by the internet as
a communication platform: the information can be accessed anytime.

— Inthe "i" age (iPad, iPod, iPhone) the communication platform is personalized.
Without time and space boundaries, information can now be directed to the
individual need to know.

Without much thought, people are using integrated systems on their personal
devices. Hardly anyone looks at train schedules on information boards in the
station. The railway apps automatically personalize the information based on
GPS tracking of the location of the mobile phone and the time of the inquiry.
Only trains leaving from the nearest train station in the coming hour are shown.
Travelers expect this information to show first.

As computing power and computing speed increase, computer chips are becoming
smaller. The “disappearing computer” has been integrated into our televisions,
wearable computers, mobile phones, actuators, wireless communication
equipment, Radio Frequency Identifier (RFID), tags and cards and Personal Digital
Assistants (PDAS).
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Ubiquitous computing technologies integrate computers seamlessly into the
physical world. In addition, sensor technologies such as QR (Quick Response) Code,
GPS (Global Positioning System), Light, Pressure and Humidity Sensors, Magnetic
Sensors, Orientation Sensors, Gyroscope, Microphones, Accelerometers, Clocks,
Cameras and NFC (Near Field Communication) are used to acquire information
in a ubiguitous environment, making them both a service and a data collection
device.

loT (internet of things) devices are also programmable to deliver services through
real-time data analysis. Simple examples are a Fitbit tracker that signals when a
heart rate threshold has been surpassed, or a security gate delivering an alarm
when it detects safety breaches.

The further embedding of integrated systems will support services on appliances
and products without human interaction. Examples are car systems that
automatically summon an ambulance when an air bag in the car deploys, or
mobile phones that shut down when they detect that a car is moving.

The abundance of intelligent devices creates a complex system of agents interacting
with each other. Intelligent and Autonomous (complex) Systems are studied by
the IAS group at CWI, focusing on mechanisms that enable the emergence of
various degrees of organization, intelligence and autonomy in such systems, and
apply them to problems of societal relevance.
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3 Data analysis and mathematical modelling

Data science is the process of adding meaning to data in order to create knowledge
and understanding. Companies have traditionally applied business intelligence to
monitor and to manage their business processes. Data science that extends beyond
the goals of business intelligence use data for understanding, forecasting and
decision making. The GoDataDriven Big Data survey 2017 (GoDataDriven, 2017)
states that business companies see a difference between business intelligence
and data science. Eighty-seven percent of the companies use data for dashboards
and reports, but 45% of the respondents says that they do not yet use data to
develop predictive models. Some perceptions are that data science “takes over”
the managerial business development models, the way we do business. However,
data science is an additional way to manage businesses, combining data with
business instincts and human knowledge.

Designing a data science project: Business Analytics

Business understanding is important for the setting of a data science project.
The urban analytics group offers business analytics workshops through the
Smart City Academy® to identify how data can support business development.
In this workshop we use business development techniques (Nieuwenhuyse &
Vanhoudt, 2008) to design a data science project that has an actionable impact on
the company. Actionable means that the project is executed in a controlled setting,
with a limited number of known stakeholders and several well-defined goals.
The workshop associates the business project goals with possible interventions.
Crucial in the workshop is to define critical process indicators from the data that
monitor the outcomes of the project. Only when the goals of the project are clear
and the use of the data is defined, one should begin with collecting (raw) business
data and start the data project.

THROUGH THE CLOUDS 29



Example: The use of data to improve satisfaction with the restrooms in the
Amsterdam Arena.

‘ How can loT help to improve service in the restroom areas to enhance fan experience? ‘

2 ‘ Which factors affect crowdedness of toilets? ‘ ‘ Which factors affect hygiene? ‘ ‘ How to improve fan experience? ‘
5 2| How does Difference How many When to clean? How do fan When to alert How to inform
o . .
5 z alcohol toilet use toilets per volumes cleaners fans about free
% 2| consumption women and area are relate to about dirty and clean
€ 1 impact? men? there? hygiene? toilets? toilets?
)
& | More alcohol | | Women toilets Cleaning Frequent use Incident There are other
5 increases are busier, ? schedules have increases cleaning is restroom areas
:% visits longer stays mismatch dirty toilets needed for fans
Monitor Distinguish Count Monitor hygiene | | Monitor toilet Record Monitor
z alcohol sales men women toilets per at scheduled use and cleaning available, clean
= with toilet in dataset location times hygiene incidents toilets
use
@
‘2 | Analyse time | | Analyse men & Map Analyse Analyse toilet Analyse Visualize toilet
'_C“ & space women toilets toilets scheduled versus frequency cleaning occupacy per
= alcohol vs separately incident cleaning || and hygiene incidents location
8 toilet use

Figure 9  Business analytics for the use of restrooms at Amsterdam Arena’

The business terminology used here to describe a data science project also holds
for many other projects, including bottom-up citizens development. For instance,
when defining a data project to improve social engagement in a neighborhood, it
is still important to identify stakeholders (who), actionable process interventions
(how) and key performance indicators (goals).

Data science project

A data science process starts with a precise research question, its relation to the
business context and the scope of the project: these are the required outcomes of
the project. The business analytics workshop helps to define the research question.
The research question also determines the approach to the project. Sometimes the
project is more a business intelligence project (visualizing business data) than a
data science project (adding meaning to data to create knowledge).
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The data science project follows these steps: define the research question, extract
data, analyze the data, visualize and implement the results. The details of the data
science project are given in figure 10:
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Figure 10 Data science project

ETL (extract, transform and load)

The collection of raw data will require some loops to determine the data quality,
to store the data and to make the data accessible. Data acquisition (raw data),
establishing data connections (API, LoRa) and sensoring and managing loT data
streams require some technical skills. The urban analytics group is writing tech
reports to help acquire the basic skills for data acquisition (see e.g. reports on
Wi-fi scraping, Web scraping, APl setup, UA-Ubuntu images for Raspberry Pi on
www.hva.nl/urban-analytics).

From an ICT perspective there are many challenges in handling and using the
acquired data, for instance developing high dimensional data structures, the
fast exchange of large data sets, or the optimal use of computational power.
Big data requires accurate data engineering, both for research purposes and for
their applications. Not only do big data sets need to be (stored and) processed
to generate the information and the knowledge, but due to the possible flaws in
the data collection the data needs pre-processing to identify errors, missing data
fields and other irregularities.
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IDOLAAD project

The Energy research group of the Urban Technology research program of the AUAS
hosts the data of all charging sessions of electric vehicles in the public streets in
Amsterdam, Rotterdam, Utrecht, The Hague, and the Metropole Region Amsterdam
(MRA). The dataset requires many cleaning steps to handle erroneous charging
sessions, such as double records, empty records, no kWh charged, zero connection
time, and unidentifiable charge station. For the 2012-2014 datasets of the City of
Amsterdam cleaning the datasets reduced the number of records (sessions) from
approximately 400.000 records to less than 250.000.

Hogeschool van Amsterdam I s—o - |a a d

Amaterdam University of Applied Sciences

OUT OF 380,000 RECORDS A SUBSET OF
~250,000 WAS SUITABLE FOR ANALYSIS

- .
300000

Totsibefore  Conmection time Physicly impossible  Unknown dats  Double records Shoet time Double provider  Net usable records
deanting repar charge sessions.

Figure 11 Data cleansing of the CHIEF data sets

Visualization

Visualization is used in the exploration phase of a data science project. In Tufte
(1985) basic principles and examples of visuals that help the data exploration are
explained, and the famous Anscombe data representation example (Anscombe,
1973) shows the importance of visualization. At the end of a data science project,
visualization is used to communicate the results to stakeholders, for instance,
through dashboards (both static or interactive and real-time), by graphical
representations or by using storytelling tools.

The IDOLAAD project uses visualization techniques for monitoring the charge
infrastructure and reporting to the municipalities.
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Figure 12 Charge Infrastructure Amsterdam: Example dashboards (IDOLAAD.nl)

Visual analytics (Keim et al., 2008) is a research field that uses visualization as
the prime analytic technique to retrieve knowledge from the data. Examples

are geospatial analytics, cognitive and perceptual science and knowledge
representation.
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Data analysis
The analysis of the data to understand the underlying process can be characterized
into four groups: what happened, why did it happen, what will happen in the
future and how can we make it happen.

Optimization
Decision

Time Series 2UBpOLL

Predictive
models
\ Prescriptive
=
make it happen?

Value

Diagnostic i
Analysis What will
" i -
Analysis Why did it
happen?
What
happened?

Difficulty

Figure 13 Data analytics®

Data analysis can be one or any combination of the techniques in Figure 13.
Descriptive analysis is closely related to business intelligence and visualization
techniques: it uses statistics, dashboards, reports and other visualizations to give
the user insight into the data. As noted at the beginning of this chapter, 87% of
the companies use their data for descriptive analysis.

Diagnostic analysis consists of a wide range of sometimes already long-
established techniques and models such as correlation and mathematical models
to find causal effects. Big data adds a new dimension to this analysis: large high
dimensional data streams are now used for the data analysis and automation
of data exploring algorithms. It's difficult to establish a ranking or hierarchy
between data mining, artificial intelligence, data analytics and machine learning.
Data mining is the process of discovering interesting patterns and knowledge
from large amounts of data (Han, 2012). It consists of automatic (machine-driven)
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algorithms for finding patterns or clusters in a dataset, and for finding causal
relations. Combining multiple sources of data is an important part in data mining.
Data mining is a foundation for machine learning and artificial intelligence; it
can be used to formulate hypotheses about undiscovered structures in the data.
Machine learning is a more generic process of training using (historical) data to
predict the outcome for new instances (predictive analysis), typically used for,
among others, recommendation systems. Artificial intelligence (Al) is a field that
uses data for automatic logic, perception, reasoning, learning, and actions. Al
is used, for instance, for language understanding, image processing or complex
automated systems and robots.

Machine learning and Al can often perceive, understand, predict, and manipulate
real-world research questions faster and more precisely than humans. However,
they cannot exist without a proper interpretation of the application and its
context. Barthelemy (2016, section 2.5.3) gives an example where the CO2
emissions levels from vehicles in cities are measured. The understanding of the
city size (defined by land use or by population density) gives a radically different
context of a city, leading to different conclusions. Depending on the definition of
a city, larger cities are considered to be either less green (urban areas) or greener
(population density).

The predictive and prescriptive analysis thrives on the understanding and
modelling of the patterns in the data (diagnostics analysis). Data analysis of this
kind supposes that the data can be divided into patterns that can be found and
modelled (f (X, B)) and noise (&) that is data that the mathematical model at hand
cannot explain:

Y=fX,B)+¢

Here Y is the characteristic under study, X is the set of characteristics related
to Y through a functional form (f(X,8)) with a weight factor g. For instance
the amount of kWh energy usage in a household Y can be explained by other
characteristics (X) in the dataset, such as household size, and a score of the quality
of the building. This will hardly ever be a perfect functional form. The residue
[formule] is noise, the part that cannot be explained. When the mathematical
form is acceptable (e.g. the noise is small enough) we can predict future behavior
of Y by applying the functional form to predicted values of X.
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Data-driven services
A data science project uses data to help understand and act on a business process.
The results of the data science project will enable the use of new data-driven
services for monitoring, optimization and digital platform (communication) tools.

Data-driven products of the IDOLAAD project

Some successful data science projects in the IDOLAAD project for the charge

infrastructure of electric vehicles are (see also http://www.idolaad.nl/):

* CHIEF dashboards: an interactive dashboard with the monthly performance of
the charge stations (see figure 11, Maase et al., 2017)

* Public parking space reservation for electric vehicles (Piersma et al., 2017)

A fuzzy model for measuring the pressure on charge station networks (Piersma

etal., 2018).

*  Profiling EV chargers with machine learning (Van den Hoed & Helmus, 2015).

*  Predicting future charging demand in neighborhoods (Steenbrink et al., 2016).

* \Web-based applications:

Free charge stations (https://www.oplaadpunten.nl/, https://www.amsterdam.

nl/parkeren-verkeer/amsterdam-elektrisch/kaart-oplaadpunten/) Social charging

app (https://www.social-charging.com/)

Mathematical Modelling versus Data Mining

There is a major difference between studying real-life processes using data discovery
techniques or by fitting a mathematical model to the process. Data mining finds
patterns in data and models the observed (cor)relations; the mathematical form
is therefore a result of the data discovery process. Mathematical modelling
presupposes a structural form of the real-life process and tries to fit this model
to the process by finding parameter values. Examples of mathematical models for
prescriptive analysis are decision models, complex systems and simulation models.

Simulation models are mathematical models that are used to predict the outcome
of structural changes in the system that cannot be observed real time. By statistically
modelling the actors in the current systems, and by simulating alternative setups
of the system with the same actors, one can derive performance measures for the
alternative setups.
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Modelling the interaction among multiple identities to understand the complex
system in an urban environment is not easy. But practical applications may
need very complex mathematical models to understand their dynamics, relying
on many data sources to capture the dynamics. The IAS group at CWI studies
complex systems and their algorithms.® Translating these mathematical models
into practical applications is one of the challenges of the Urban Analytics group.

The different approaches to modelling data processes can strengthen each other.
For instance, for the IDOLAAD project, in (Steenbrink, 2016, Berkelmans, 2018)
the predicted electrical vehicle charge demand per neighborhood is modelled as
a discrete choice model (EV users choose a neighborhood for charging), with a
multi-nested logit model as the statistical model for the probability of choosing a
specific neighborhood. This model is then applied to a dataset of charge sessions
to find the parameters of the mathematical model. By distinguishing different
users (taxis make choices for charging that home-based chargers or commuters
do not) we find different models for each user type. These profiles of EV users
were found in the data by using machine learning (Van den Hoed & Helmus,
2015). The total charge demand in the neighborhoods is then calculated as a
weighted combination of the choice models for the distinct user types, resulting
in a more precise model for the prediction of future demand.

Explainable Artificial Intelligence (Al)

Al algorithms learn from historical data. They possess the ability to reason, to draw
inferences based on the situation and context and to analyze and solve complex
problems while handling constantly changing structured and unstructured data.
The field of artificial intelligence attempts to build intelligent entities operating
independently in a complex environment. Examples are self-organizing systems
(such as robots), self-learning systems (such as social media recommendation
systems) or deep learning algorithms (such as camera recognition systems).

Citizens' interactions with (artificial) intelligence systems will occur through the
increasing availability of smart devices and designs. These socio-technical systems
only support urban living if citizens understand and accept the algorithms. The
citizens have to trust the way the algorithms work and what implications the
results have for the application.
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For instance, false positives (erroneous findings in the data) and false negatives
(failure to find a result in the data) may have different implications.

Type I error Type II error
(false positive) (false negative)
K ) " ' | You're not
' £ | pregnant
£ / |

L

You're
_ pregnant

=
-
Figure 14 False positive and false negative for pregnancy

If an algorithm is 98% precise in predicting an outcome, in an academic sense
the algorithm is considered to be of good quality. Other indications are sensitivity,
specificity and accuracy: measures that try to explain the cause of the errors (false
positive or a false negative).

This leads to discussions in public space: how much do we care about false
positives or false negatives? A false positive usually costs money in the forms
unnecessary additional research or counter measures. In an ethical sense, we find
that false negatives have more serious implications.

Avrtificial intelligence strengthens the public debate, since the algorithms uses logic,
perception, and intelligence (learning) to guide the real-life processes. Translating
these indicators into real consequences for performance is an emerging field
called explainable Al.

Since the amount of urban data increases exponentially, we will have a greater

need for Al algorithms to make sense of them. This is especially relevant because
Amsterdam wants to become the prime Al ecosystem in EU.
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Applied versus Academic Research

The urban environment can be studied from a well-defined actionable perspective
or by using more complex mathematical modelling. These approaches can simul-
taneously be applied to applications in the urban context.

Consider the delivery of goods in a shopping district. From the perspective of the
transport company the actionable problem is to prevent delivery delays. Its goal
is to develop efficient planning tools, where driving distances are matched with
estimated driving times based on historic data. The historical driving times are
used to estimate future driving times which are then used as input for a planning
optimization model.

A second, more academic project can be to find the causes of the delays, using data
from other sources (e.g. weather data) to give better estimations of future driving
times, and to build dynamic planning systems with real-time driving time estimates.

Even beyond that, an artificial intelligent system may add automated route planning
in the trucks of the transport company that adapts to the traffic pressure in the
neighborhood, interacting with the location of other street participants.

An agent-based simulation model is a fourth approach. It models the interaction of
the transport company with other participants in the streets (tourists, commuters,
pedestrians, other vehicles) and the use the existing infrastructure. The model
can try to find interventions in the infrastructure that reduces the delays for all
participants of the traffic system. All four projects impact the delivery problem for
the transport company, but for different stakeholders and with different actionable
partners.

From a scientific viewpoint we may also want to find mathematical laws of the
traffic situation that provide knowledge about the patterns of the street traffic,
such as chaos theory, tipping points, laws of catastrophe and so on. This approach
is theory driven, the knowledge provided by the studies do not translate into the
actionable problems, but can help to drive new approaches to street traffic (such
as negotiation models for time windows for delivery and possibilities for automatic
driving).

The goal of the Urban Analytics team is to identify both the actionable research in

a well-defined setting (applied research) and the underlying scientific modelling for
extending the setup of the research environment.
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4  Urban Analytics

For the digital transformation of citizens and the emerging smart cities, urban
computing and socio-technical interaction systems in urban environments are
key elements of the surrounding of urban analytics. Any data-driven approach
relies on technical infrastructures, but also on business analytics, data analytics,
and mathematical modelling to apply services that support efficient and livable
cities. At the cutting edge of complex systems are autonomous and intelligent
algorithms, enabling citizens to use self-organizing entities, multi-agent and self-
negotiating systems that can be applied to, for instance, energy systems, predictive
maintenance services and collaborative commons.

The Urban Analytics research group will pursue four research directions:

— Business analytics and actionable models
These are well-defined research topics that can be modelled with business
analytics and solved with data analytics. The research consists of developing
scalable techniques for business analytics activities that can be transferred to
each business domain.

— Mathematical modelling for multi-agent’s systems
These research topics require understanding and explaining complex
interactions among stakeholders, requiring mathematical modelling on a
higher level of urban challenges.

— Design smart systems for socio-technological interaction
This research direction involves real-time visualization and decision-making
supported by a technical device. Smart explainable algorithms programmed
on the device should be transparent and understandable for the users.

— Universal laws of scaling in cities
From a meta perspective, the complexity of urban computing/analytics
research questions will scale with the size of a city (and the number of
citizens). Understanding the impact of the city scale on smart cities is an
unexplored research field. In this era of exponential growth of data and digital
transformation the theory of scaling is especially interesting.

These research directions have applications in three domains in urban
environments: energy, urban living and mobility.
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Energy

In the energy domain, the digital transformation is complemented by the transition
to sustainable energy sources. Energy grids are becoming complex systems that
allow for bi-directional energy flows, for instance to load solar energy into the
energy grid. Smart grid systems are communication networks, using data-driven
energy-balancing algorithms to transform the conventional energy grids into an
intelligent and adaptive energy delivery network (for an overview of communication
networks for smart grids, see Kahn, 2013).

Smart meters and energy-balancing algorithms can be applied to optimize energy
usage. Predictions of energy demand for the next day or even hour is done by
the energy company for all its customers in a designated region. But balancing
the energy use can also be done locally (smart buildings) or by household (smart
homes), using smart meters and price elasticity algorithms. Energy optimization,
prediction models for future demand on different time scales, and the participation
of consumers in the demand response to price incentives and to sustainable
alternative (local) energy sources are active research fields. Mocanu (2017) has
applied machine learning algorithms to smart grids.

Energy companies are incorporating smart grids into their business models.
Smart grids are being pilot-tested worldwide to see how consumer participation
influences the energy nets:

- Social platforms and tools for citizens can help to balance household energy
usage, by arranging for home people to use energy at certain times. For
instance, the social charging app for electrical vehicles will use charging
stations more efficiently by sharing a charging station among several vehicles
and by charging cars when it is less expensive.

— There are already pilots with local energy nets: privately owned energy systems
such as solar or wind systems that can produce energy locally. The supply
energy production of privately owned solar panels can be stored in batteries
or returned to the energy net. The communication and administration of this
system is supported by a socio-techno platform.

We see three uses of data analytics for the energy sector: digital platforms to
support energy communication, optimization of energy use and the prediction of
future energy usage. Many datasets are available about energy consumption in
the traditional (fossil fuel based) grids. Data about both traditional and sustainable
smart energy systems are less available. The Urban Technology group wants to
initiate a data platform for open energy data.
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The Urban Analytics group will participate in three projects in this field of smart
energy systems.

Project Smart Charging (TKI, approved)

Charging electric vehicles (EV) is closely related to the project (smart) energy systems.
Each EV in itself is a battery for energy that can be used for driving or for (temporarily)
storing energy. The number of EVs is growing, along with the understanding of the
charging and driving behavior of the EVs. Intelligent systems for smart charging and
for the support of energy exchange between citizens using EVs is an interesting
addition to the energy system study in Cities. The study includes:

— smart charging algorithms

— social charging platforms

— prediction models for charging demand

— matching algorithms for charging and household’s energy demand

Project Energy Intranets (NWO, approved)

As the share of renewables grows, so does the decentralization of production
and control, making it more difficult to match supply and demand. New control
mechanisms and ancillary services will need to be developed to dampen the inevitable
fluctuations. This project proposes to investigate the use of data-driven demand and
supply matching in challenging use cases.

Project citizens empowerment (Interreg, in application)

Our aim is to allow citizens in our cities to benefit from the energy transition by
empowering them. This means a better choice of supply, access to reliable energy
price comparison tools and the possibility to produce and sell their own electricity.
Increased transparency and better regulation give more opportunities for civil society
to become more involved in the energy system and respond to price signals.

Our approach follows four focal points:

— Analysis of specific governance/regulatory/technical challenges

— Development of optimal regional methodologies

— Testing of the methodologies in eight pilot projects

— Communication

42 NANDA PIERSMA



Urban Living

Governments and municipalities try to organize the cities such that it has high
economic, livable and sustainable standards. Urban living is the way in which
humans interact with a city environment. Cities are complex systems of (technical)
infrastructures, human activities and human technical interactions. Systems for
housing, mobility, food, energy and water are basic subsystems in cities, the
city infrastructure. In Chapter 2 a City Brain was introduced as part of the city
infrastructure, consisting of data to make the city’s work efficient and effective.

City governments aim to improve prosperity, in economic status, in health, in
sustainability and in social cohesion. Well-being and social cohesion are important,
but they are complex goals that are difficult to measure (see ranking of cities
Chapter 1). The livability for citizens in urban environments has many indicators,
such as clean air, no pollution, green spaces and good recreational facilities, good
schools, inclusive society, good health services, and good mobility.

The interaction between bottom-up and top-down approaches to a smart city
are visualized in digital platforms. Citizens’ interaction systems and smart designs
are used for visualization of information and insights from the data, to interact
with citizens and display the results of analysis. Often the data itself is shared
on the digital platforms. The citizens themselves monitor their environment and
share their data. Sensing the city is done to detect anomalies, to create inclusive
communities and to match city services with the needs of its citizens.

The European Horizon program mentions “Digital innovation hubs and platforms”
as an innovation theme for the next five years, with these subfields:

— Open data markets/exchange hubs

— Blockchains

— Big data platforms

— Citizens' data lab (participating citizens)

In GUST (2017) the characteristics, practices and examples of urban living labs
are discussed, a collaborative, transdisciplinary co-creation form of experimenting,
designing and evaluating new ways in urban living styles. They show three forms
of living labs: strategic (led by governments or large private actors), civic (led by
urban actors such as universities, cities or urban developers) and grassroots (led
by urban actors in civil society and not-for-profit organizations).
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The Create IT research group hosts the civic form with the Citizens Data Lab,
where inclusive data-collecting practices are studied. De Gezonde Stad hosts
grassroots labs such as the zero-waste lab. Both are citizen-empowering labs
from a bottom-up perspective. In A Lab of Labs (Ferri & de Waal, 2017) the Waag
Society explains how it uses game and narratives to design inclusive interactions
with the citizens of Amsterdam. The Urban Analytics studies the city data in the
urban living labs of these partners.

Project “Design thinking for the Circular Economy”

(Raak MKB, in preparation)

The design of technical systems for sustainable and social neighborhoods. Small
Business Enterprises develop the technical solutions for citizens’ communities.
Citizens' participation in local production chains (reuse of waste products, energy,
food) need digital (communication) platforms, technology and sustainable business
models to create an inclusive successful circular economy. This project studies
how design methodologies can help to introduce socio-technical systems in local
communities to build a circular economy.

Project Monitor “Gezonde Stad” (ongoing collaboration)

Every April a monitor of the sustainability goals of the city of Amsterdam is presented.
It consists of five fields: Green spaces, Waste, Clean Air, Energy and Food. The
monitor is updated annually (by the Gezonde Stad and the Urban Analytics team)
and presented at a festive meeting (“Wij maken de Stad”) in April.

Mobility

Busy streets are a serious concern for citizens and the municipal governments.
People and goods compete for space in city streets. The new subway line “Noord
Zuid lijn” will start running in 2018, with major consequences for public transport
in Amsterdam. City services such as garbage collection cause traffic streams in
all parts of the city at all hours. Online shopping reduces shop delivery logistics,
but results in many diesel fuel buses servicing the last mile of the supply chains.
Ploos van Amstel (2015) shows that 10-15% of the traffic kilometers in the city
are freight traffic, with examples of 40% during morning and evening rush hours.

44 NANDA PIERSMA



Temporal and spatial studies with dynamic (real time) analysis of the use of the
public domain are possible through the use of data from sensors, cameras and
from smart devices brought by the participants such as mobile phones, GEO and
Wi-Fi trackers. The Urban Analytics team will study the logistics in city shopping
districts, a study of the impact of the Noord Zuid subway line and dynamic
planning of garbage collection.

Project Noord-Zuid Lijn

Joint project plan with Rob van der Mei (CWI), Elenna Dugundji (CWI/VU), GvB,
Municipality of Amsterdam, UvA. This project monitors the interaction of citizens
(travelers) with the new subway line in the city of Amsterdam. The subway line
will open in 2018 and will replace some of the current public transport routes. The
research explores what the new transport behavior of citizens will be.

Project Logistic profiling of shopping streets

Dapperbuurt, Museumkwartier, Haarlemmerstraat, current project with Municipality
of Amsterdam (Logistics group).

These streets face many actors that interact, such as delivery of goods, attractive
environments, customers’ access, garbage collection, and parking.

Project Dynamic data-driven planning of garbage collection

Current project with Municipality of Amsterdam (Garbage project team) and Walther
Ploos van Amstel.

Efficient dynamic route planning, in combination with smart solutions for reduce of
waste, separate collection of reducible waste products and the optimal location of
collection stations all rely on data and data analysis. For instance, accurate prediction
of the fill rate of underground garbage containers is a crucial element for the dynamic
route planning algorithms.

These projects are complemented with an academic study on scaling of cities.
With the students of the AUAS, the Urban Analytics team will use urban data to
study the city of Amsterdam and to apply scaling methodology by West (2017) as
described in Chapter 1. The rapid introduction of the digital society will probably
disrupt these universal laws of scaling. Based on the scaling laws found so far, we
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will study the effect of the digital transformation in the field of energy, livability
and mobility.

The Big Data Station

In the Faculty of Technology there are three connections with educational programs
that form the basis of the future plans. We did start small with a data science track
in the bachelor program Applied Mathematics. Next, the thesis-lab Data Science
was developed for fourth-year students of all bachelor programs in the Faculty
of Technology. In this lab students work together on data projects from industry,
and each student writes a thesis. Last year the Big Data in Urban Technology
minor was launched, a 20-week specialization track in Data Science, open to all
bachelor students of the AUAS. The goal is to upscale relations between research
education and applications and to start a co-creation lab on data science, the Big
Data Station:
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- X .
Divers Team .
! Researchers r .
Students b New knowledge
' Lecturer relevant for
", Professionals education.
Projects relevant for Project execution by
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Y, industry and society.

Figure 15 Big Data Station principle
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The ambition of the Urban Analytics group is to become a “one stop shop” for
data science projects.

The aim is to create a permanent environment (STATION) in the Faculty of
Technology in collaboration with the bachelor programs. Students, researchers
and industry professionals work together on Big Data challenges. Students in
interdisciplinary teams can explore the viability of their ideas and find ways to turn
them into fully functioning prototypes.

The collaborative environment is case-driven, which means that students and
researchers will be working on real-life cases, with real data from industry and
society. Activities range from complete education programs (e.g., educational
track Big Data) to co-curricular activities (e.g., inspiration sessions and hackathons).

Lecturers are invited to translate the activities of students into curriculum points,
researchers (and students) bring new knowledge and techniques into the station
and industry share their projects and challenges. In this environment, learning is
stimulated and facilitated by the researchers and lecturers of the faculty using
online material on data science. The online training can be used by students
and professionals and tailored to suit the individual needs. The Big Data Station
provides innovative education for the Faculty of Technology in three ways.

First, the lecturers will be able to keep their knowledge up to date by working on
Big Data challenges. Second, the curriculum becomes flexible. Finally, students
develop life-long learning skills with an active role in the co-creation process.

The Urban Analytics research group will first connect and disclose expertise, and
then develop new expertise as needed. The station builds knowledge cells, but
can also scale down by deserting knowledge cells that are no longer useful in the
research projects. The research environment connects to the partners’ living labs.
If needed, the projects can be done in the urban analytics research environment,
an experimental research environment that is available for participants in the
projects.
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‘ MATHEMATICAL MODELLING ‘

‘ DATA ANALYTICS TOOL BOX (Al, datamining, machine learning, business analytics) ‘

‘ DATA MANAGEMENT PROCEDURES (GOVERNANCE) ‘

UBUNTU SERVERS (computational, SQL, Windows,...) / SOFTWARE (R, Python, SQL, ...)
loT (Rapsberry Pi’s, sensors)

N

‘ LIVING LABS, PARTNERS, CO CREATION SPACES, CLOUDS ‘

Figure 16 Architecture of the Urban Analytics Research Environment

The faculty of DMCI has invested in data labs, such as Citizen Data Lab, MediaLAB
Amsterdam, Makers Lab, Publishing Lab, Interaction and Games Lab, where
students and researchers are working on visualization techniques and design
studies. The Faculty of Technology has invested in a Sensor lab, a Simulation lab
and the Data Science thesis lab.

These labs can be partners of the Big Data Station, as independent labs, but with
shared projects and knowledge transfers.

The station (or lab) is a place where students, lecturers, researchers and industry
partners can collaborate on data projects. It supports a data infrastructure and
has data science knowledge in different sections.

Smart prototypes

Communicating the results of the data analysis can be the end of the data project,
and very likely the start of a new cycle. With smart devices, data can be collected
and analyzed in real time on the device itself, even resulting in actionable devices
(such as a smart device that turns the light off if the device detects no humans in
the room). In this way we can combine data analytics and mathematical modelling
with the technical infrastructure of a city.
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In autonomous systems, one can program negotiation, auction, stochastic, and
simulation models. The socio-technical systems with the technical prototypes can
only work properly when (artificial) intelligence is programmed on it. This can be
simple add-ons (recognizing malfunction, postponing the start of a load session
for an EV) but more interesting applications are the recognition of busy streets,
with suggestions for alternative routes for approaching cars, reservations and
negotiation models for parking spots and loading zones, and exchange of (solar)
energy among partners in an energy grid.

The AUAS can build prototypes of technical equipment with intelligent algorithms
developed at CWI. With its business partners, the sensor lab of the Urban
Technology group, the engineering department and the Smart City Academy this
creates an interesting application environment for the intelligent algorithms of
the CWI.

Another advantage of the use of smart devices is that it can solve privacy issues in
data collection, for instance camera detection devices that record the number of
people in a room, but do not save images; this is an example of privacy by design.
It requires computational power and algorithms that operate on the technical
device, making it smart.

Digital Society School

In February 2018 the the “Data-driven Transition” track of the Digital Society
School will start. Within this track we will study, develop and conduct applied
research on how society can use data and gather new insights to help or accelerate
societal transformations. Participants in the Digital Society School will learn how
(digital) technology can have a positive impact on society. It will complement the
development of technical systems by implementing technologies in society. The
Urban Analytics team will be part of the developing team of the track Data-driven
Transition. This track is closely connected to the Big Data Station and the projects
in the energy domain, creating a co-creation community with different expertise
and experience.

Urban Analytics will have to choose the project wisely. There are three domains

(energy, mobility and livability), three levels of engagement (academic and applied
research, education) and many partners in business, government and citizens.
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Notes

Angus McDonald, the Wisdom-Knowledge-Information-Data Pyramid originates
from Thierauf (1999).

Graph by Leopold (2014).

https://autoriteitpersoonsgegevens.nl/en/news.

See https://www.cisco.com/c/en/us/solutions/industries/smart-connected-
communities/kinetic-for-cities.html.

Graphics from Wu et al., 2017.

Contact smartcityacademy@hva.nl.

Developed by Bas Breur, Hans den Boer, Sterre van der Poll, Thairis da Silva Faria
as part of the minor Big Data in Urban Technology.

Graph by Gartner, see Gartner.com.

See an introduction of the IAS group at https://www.youtube.com/watch?v=
kimPrN5iWwO0&index=9&Iist=PLtBI3dSNhbhgXwyNPSE8hJgySy6d18RWZ&t=5s
Images from the Marginal Revolution, Type | and Type Il Errors Simplified,

by Alex Tabarrok on May 10, 2014. http://marginalrevolution.com/
marginalrevolution/2014/05/type-i-and-type-ii-errors-simplified.html
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