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Abstract

Circular and elliptical motion are fundamental
topics in physics education, yet learners often
struggle to grasp them. We investigate how
interactive qualitative representations can be used to
describe the characteristic behavior of circular and
elliptical motion. We use the vocabulary and
algorithms known as qualitative reasoning, which
make it possible to represent the distinct features of
these systems in a conceptual way. Leveraging the
close alignment between qualitative reasoning and
human reasoning about dynamic systems, these
representations have the potential to enhance
understanding in this domain.

1 Introduction

Circular motion is a fundamental concept in physics that
describes the motion of an object moving in a circular path.
The direction of velocity (but not the speed) of an object in
circular motion changes due to the centripetal force which
causes centripetal acceleration. Centripetal force is directed
towards the center of the circle. In the case that an object is
orbiting another object (e.g., a planet orbiting a star)
centripetal force is equal to gravitational force.

Celestial bodies generally follow elliptical orbits, although
circular orbits are often used as a simplified approximation
for easier understanding. Additionally, certain celestial
bodies, like moons, exhibit nearly circular orbits around their
parent planets. The elliptical motion of celestial bodies is
governed by Kepler's laws of planetary motion, which can be
explained by the gravitational forces exerted between
celestial bodies. The strength of gravity depends on the
distance between the bodies. As the distance changes within
an elliptical orbit, gravity varies, resulting in different
acceleration at different points along the orbit. The elliptical
shape of the orbits arises from the balance between the
gravitational force and the momentum (the product of the
mass and velocity) of the object in motion.

In physics education, circular and elliptical motion is often
explained on the basis of mathematical formulas. Learners
then work through exercises involving calculations using
these formulas to process and learn this knowledge. The use
of supporting software is limited. Particularly, the conceptual
knowledge that explains the working of the mechanisms is
not available in an interactive format. This issue poses a
challenge in physics education, as there have been numerous
reported difficulties associated with understanding circular
and elliptical motion [e.g., Alonzo & Steedle, 2009; Barniol
& Zavala, 2014; Canlas, 2016; Liu & Fang, 2016].

In this paper we focus on describing circular and elliptical
motion using interactive qualitative representations
[Bredeweg et al., 2023a]. For the work presented in this
contribution we use the software Dynalearn [Bredeweg et al.,
2013]. This software is implemented as a server-based
architecture deploying the Garp3 reasoning engine
[Bredeweg et al., 2009]. The front-end is web-based and
provides a diagrammatic approach for users to construct and
articulate their thoughts. Learning through the construction
of qualitative representations has proven to be a successful
approach [Bredeweg et al., 2023a; Kragten & Bredeweg,
2023], highlighting the potential of the representations
described in this contribution to enhance understanding.

2 Circular motion

To represent circular motion qualitatively, the following
notions have to be addressed: entities, quantities, possible
values and direction of change, causal dependences,
correspondences, and finally simulation consisting of
qualitatively distinct states and transitions between them.

2.1 Direction of change and values of quantities

Entities represent the physical objects that constitute the
system. Let’s assume we model a moon orbiting a planet. In
that case, the qualitative representation will have two entities:
Moon and Planet. Quantities represent the measurable



properties of entities, as such, the entity Moon has a position,
a velocity, etc.

positive point on the x-axis (or y-axis). Notice that, ‘min’, ‘0’
and ‘max’ are points, while ‘—° and ‘+’ are intervals. It turns
out that the extreme values ‘min’ and ‘max’ are not needed
for representing all the possible behaviors. This is because if
the direction of change is zero within the negative and
positive intervals, i.e., <—, 0> and <+, 0>, they also represent
the minimum or maximum. Hence, we leave them out and
work with the quantity space {—, 0, +}. Also note that, the

/ planet is located at the origin of the coordinate plane.
l 2.2 Expected qualitative states
@ _________________ In a qualitative representation, each qualitatively distinct
behavior of the system is represented as a state.
\\ Consequently, each state has a unique set of tuples <v, 0> for
\ the gquantities describing the system. Given that the system is

Fig. 1. Circular motion of a moon orbiting a planet. A system
manifesting circular motion has eight qualitatively distinct states.

In a qualitative representation, each quantity has a value
and a direction of change, represented as a tuple <v, >. The
possible values are represented in a quantity space, also for 0.
For instance, the direction of change can be captured by {—,
0, +}, referring to decreasing, steady, and increasing,
respectively. However, the exact meaning of this depends on
the context. To represent the dynamics of circular motion, we
project the system on an x- and y-coordinate plane (Fig. 1).
With regard to Position, 0=+ is used to refer to ‘increasing’
on the x—axis (moving to the right) or on the y-axis (moving
upward), while 0=— refers to decreasing on these axes, and
0=0 refers to remaining steady (no movement).

A similar quantity space can be used for the possible
values, namely {min, —, 0, +, max}. If we consider Position,
then ‘min’ refers to most-negative point on the x-axis (or y-
axis), ‘—* refers to a negative interval between ‘min’ and ‘0’,
‘0’ refers to the origin of the plane, ‘+’ refers to a positive
interval between ‘0’ and ‘max’, and ‘max’ refers to the most-

projected on a coordinate plane, the horizontal and vertical
position, centripetal force, acceleration and velocity are the
characteristic quantities. Together they describe the system
using eight qualitatively distinct states (Fig. 1).

Table 1 shows the values and directions of change for each
of the quantities in the eight states. Consider the position of
the moon in state 1, in which case x=<+, 0> and y=<0, +>.
The moon is at its most-right position (somewhere in the
positive interval, hence ‘+’) and there is no further change in
the horizontal direction, hence 0x=0. The y-coordinate is ‘0’,
but the moon is in an upward motion so there is a positive
change in the vertical direction, hence oy=+.

In state 1, the centripetal force (F¢) and thereby the
acceleration (a) is directed to the left. To describe the change
of velocity we decompose the vectors of acceleration (and
velocity) into a horizontal (ax) and vertical component (ay).
For the horizontal acceleration holds ay=<—, 0>, which
represents that ay is at its most-negative value (the vector is
directed to the left at its maximum value) and momentarily
steady (for an infinite small moment). There is no vertical
acceleration but there is a negative direction of change, hence
ay=<0, —>. There is no horizontal velocity and the change is
negative, thus vx=<0, —>. The vertical acceleration is at its
maximum, thus vy=<+, 0>.

Table 1. Eight qualitative states of circular motion. Quantities are position: x-axis (x) and y-axis (y), acceleration: horizontal (ax) and
vertical (ay), and velocity: horizontal (vx) and vertical (vy). Each quantity has a value and a direction of change, shown as <v, 0>. Force

corresponds to acceleration. Force is not shown in this table.

State

Quantity 1 2 3 4 5 6 7 8

X <+, 0> <+, —> <0, —> <=, —> <—, 0> <, +> <0, +> <+, +>
y <0, +> <+, +> <+, 0> <t, —> <0, —> <, —> <, 0> <, +>
ax <—, 0> <, +> <0, +> <+, +> <+, 0> <+, —> <0, —> <, —>
ay <0, —> <, —> <, 0> <, +> <0, +> <+, +> <+, 0> <+, —>
Vx <0, —> <, —> <, 0> <, +> <0, +> <+, +> <+, 0> <+, —>
Vy <+, 0> <+, —> <0, —> <= —> <—, 0> <—, +> <0, +> <+, +>




Note that state 1 is a point. The quantities only have these
values and directions of change at this specific x- and y-
coordinate in the system. In fact, state 1 has an infinite small
duration. The system instantaneously moves into state 2,
which has a duration. The values and directions of change in
state 2 are true for the interval between state 1 and 3. State 3,
5 and 7 are also points. State 2, 4, 6 and 8 are intervals (with
duration).

2.3 Adding dynamics to the representation

The next challenge is to add dynamics to the qualitative
representation so that the latter can be simulated and
successive states calculated from the information in the
preceding states. Let us focus on the motion in horizontal
direction. The implementation of this part is shown in Fig. 2.
As discussed before, the entity Moon has four quantities to
represent this part of the behavior: x, Fx, ax and vx. All
quantities have the quantity space {—, 0, +}. The direction of
change is donated with 0.

Two types of causal dependencies are distinguished:
proportionality and influence [Bredeweg et al., 2013]. When
two quantities have a proportional relationship (P), a change
in one quantity (the cause) results in a change in the other
quantity. A proportional relationship can be positive (P+),
where both quantities change in the same direction, or
negative (P—), where the quantities change in the opposite
direction. The relationship between the quantities x and Fy is
negative proportional (P-). Note that Fx is the horizontal
component of the centripetal force which in this system is
equal to the gravitational force, i.e., if the moon moves
towards the origin of the coordinate plane (the location of the
planet) the gravitational pull in the horizontal direction
decreases (but increases in the vertical direction). The
relationship between the quantities Fx and ax is positive
proportional (P+). This denotes that acceleration changes
when the force applies changes.

Causal dependencies of type influence (I+, I-) can be
added to represent the relationship between a process (also
represented as a quantity) and another quantity. A process
adds or removes something to the system per time unit. If an
influence is positive (I+), a positive value of the process
results in a change in the positive direction of the affected
quantity, a negative value results in a change in the negative
direction. The relationship between ay and vy is of the type
positive influence (1+) (if ax=—then dvx=—, if ax=0 then dvx=0
and if ax=+ then dvx=+). For instance, if the acceleration in
the horizontal direction is ‘0’ than there is no change in
velocity. The relationship between vy and x is also a positive
influence (1+) (if vx<=— then &x=—, if vx=0 then 6x=0 and if
vx=+ then 6x=+). For instance, if the velocity in the horizontal
direction is negative ‘—°, than the moon moves towards the
negative side of the x-axis in the coordinate plane.

To determine the potential states of the system,
correspondences (C) can be incorporated to describe the

relationship between co-occurring values. In the present
system, the values of x and Fx are dependent, they correspond
inversely (if x=— then F,=+, if x=0 then F,=0 and if x=+ then
Fx=—). The values of Fyx and ax are also dependent, they
correspond regularly (if Fx=— then ay=—, if F,=0 then a,=0
and if Fx=+ then ay=+). The correspondences between x and
Fx, as well as Fx and ay, are directed, suggesting one-way
dependencies between the values. To represent these directed
correspondences, an arrow pointing in one direction is used

(Fig. 2).
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Fig. 2. Qualitative representation of the motion of a moon in
horizontal direction. Quantities are position (x), force (F_x),
acceleration (a_x) and velocity (v_x) (in the text we use Fx, ax and
Vx). The representation is simulated with initial settings: <+, ?>and
velocity <0,?> (not shown in the figure; ? refers to undefined). The
simulation generates 8 states, as show on the RHS in the figure. The
simulation result of state 1 is shown. From the representation it can
be inferred that: x=<+, 0>, Fx=<—, 0>, ax=<—, 0> and vx=<0, —>
(show in green). Correspondences are represented by the symbol C.

2.4 Simulation of horizontal motion

Fig. 2 shows the simulation for the horizontal motion, as it
can be computed from the details discussed so far. The initial
settings for this simulation are: x=<+, ?> and v,x=<0, ?> (?
refers to undefined). All the other information can be inferred
from this. The state graph (Fig. 2, RHS) shows that the
system has eight states. The simulation result of state 1 is
shown.

In state 1, the moon has no horizontal velocity (vx=0), as
determined by the initial settings. The causal dependency
between vy, and x is of type positive influence (I+) and
therefore the horizontal position of the moon does not change
(if vx=0 then &x=0). This results in x=<+, 0>, indicating that
X is at its maximum. There is an inversed correspondence
between x and F, indicating that the horizontal gravitational
force on the moon is to the left (if x=+ then Fy=-). The
correspondence between Fy and ay indicates that the moon its
horizontal acceleration is also to the left (if Fx=—then a,=—).
There is a negative proportional relationship (P-) between x
and Fx and a positive proportional relationship (P+) between
Fx and ax. The horizontal position of the moon does not
change and as a result gravitational force in the horizontal
direction does not change (if ox=0 then J&F=0).
Consequently, acceleration in the horizontal direction does
not change (if 6Fx=0 then dax=0). Therefore, in state 1,



Fyx=<—, 0> and ax <—, 0>. Both quantities are maximal in the
negative interval, i.e., both vectors (Fx and ay) have their
maximal value (or magnitude) and are directed to the left. The
causal dependency between ayx and vy is of type positive
influence (I+). The horizontal acceleration is to the left and
as a result the direction of change of the horizontal velocity
is to the left (if ax=—then dv,=—), i.e., vx=<0, —>.

In state 2 (Table 2), the moon its velocity in the horizontal
direction is to the left and increasing, i.e., v\=<—, —>. As a
result, the moon is on the right of the y-axis and moving
towards the left, i.e., x=<+, —>. As the moon moves closer to
the x-origin of the coordinate plane, the gravitational pull,
and consequently, the acceleration in the horizontal direction
towards the left, decreases, i.e., Fx=<—, +>and ax <—, +>.

The changes from state 2 propagate onwards, continuing
until state 8. Upon reaching state 8, the values resemble those
of the simulation's initial settings, initiating the repetition of
circular motion.

2.5 Completing the model

Thus far we have managed to represent the movement of
the celestial body in the horizontal direction. For this, it is
important to see that the causal dependencies between
quantities that describe vertical motion are similar to those of
the horizontal direction. But how to represent the pendulum
movement of the moon between its most-negative and most-
positive position in the horizontal and vertical direction?
Both pendulum movements have 8 possible states and
without further information this results in 64 (8 x 8) possible
states. For instance, the motion in the horizontal direction can
go through all its 8 states while the motion in the vertical
direction is still in its first state. An important insight is to
realize that the pendulum movements in both directions are
dependent.

Table 2 shows the correspondences between the values of
the quantities in both directions when describing circular
motion. All correspondences are bi-directional and apply to
the entire quantity space. It is important to note that due to
the bi-directional nature of correspondences, they also apply
in the opposite direction. Table 2 includes six
correspondences, namely between:

= x and ax. When the moon is positioned on the left side of
the y-axis, its acceleration in the horizontal direction is
towards the right (if x=— then ay=+). If the moon crosses
the y-axis, there is no acceleration in the horizontal
direction (if x=0 then a,=0). When the moon is located
on the right side of the y-axis, its horizontal acceleration
is towards the left (if x=+ then a,=—).

= x and vy. When the moon is positioned on the left side of
the y-axis, its vertical velocity is downward (if x=— then
vy=—). If the moon crosses the y-axis, there is no vertical
velocity (if x=0 then vy,=0). When the moon is located on
the right side of the y-axis, its vertical velocity is upward
(if x=+ then vy=+).

= g, and vy. When the moon its acceleration in the
horizontal is directed towards the left, its vertical velocity
is upward (if ax=— then vy=+). If the moon has no
acceleration in the horizontal direction, there is no
vertical velocity (if ax=0 then vy=0). When the moon its
acceleration in the horizontal direction is toward the
right, its vertical velocity is downward (ax =+ then vy=—).

= y and ay. When the moon is positioned below the x-axis,
its acceleration in the vertical direction is upward (if y=—
then ay=+). If the moon crosses the x-axis, there is no
acceleration in the vertical direction (if y=0 then a,=0).
When the moon is located above x-axis, its vertical
acceleration is downward (if y=+ then a,=—).

= y and vx. When the moon is positioned below the x-axis,
its horizontal velocity is towards the right (if y=— then
vx=+). If the moon crosses the x-axis, there is no
horizontal velocity (if y=0 then v,=0). When the moon is
located above the x-axis, its horizontal velocity is
towards the left (if y=+ then vy=-).

= ay and vx. When the moon its acceleration in the vertical
direction is downward, its horizontal velocity is to the left
(if ay=— then vx=—). If the moon has no acceleration in
the vertical direction, there is no horizontal velocity (if
ay=0 then v,=0). When the moon its acceleration in the
vertical direction is upward, its horizontal velocity is to
the right (ay =+ then v,=+).

Table 2. Correspondences between quantity spaces in circular
motion. The correspondences establish the co-occurrence of
values of quantities of the horizontal and vertical direction of
circular motion.

value X y ax ay Vx Vy
X - + =
0 0" 0"
. s “
y - + s
0 0" 0"
N s s
ax - + :
0 0" 0"
. . «
ay - + =
0 0" 0"
N . «
Vx - + =
0 0" 0
+ = +*
vy _ . «
0 0" 0
+ +* =

* bi-directional correspondence



We can now add correspondences between quantity spaces
of the horizontal and vertical motion. We only add four bi-
directional correspondences (indicated by an arrow point on
both sides) to the qualitative representation (Fig. 3) because
by adding the correspondence between x and vy and vy and a,
the correspondence between x and ax becomes redundant.
The same logic applies to the correspondence between y and
yx after adding the correspondences between y and vy and vy.
and ay,. Note that we could have discarded other
correspondences (or added them all). We made the decision
to include correspondences between quantities of both
directions, as they explicity = communicate the
interdependence of the pendulum movements.

2.5 Simulation of the complete model

The representation is now ready and can be simulated. The
starting condition for simulating the full representation is
x=<+,?> and y=<0,?> which corresponds to state 1 in Figure
1 and Table 1. The state graph (Fig. 3, RHS) shows that the
system has eight states.
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Fig. 3. Qualitative representation of circular motion. The vertical
motion (with quantities y, Fy, ay and vy) is comparable to the
horizontal motion (with quantities x, Fx, ax and vx). The simulation
generates 8 states, as show in Fig. 3 on the RHS. The simulation
result of state 1 is shown. An important insight concerns the four
correspondences between the two mations.

Fig 4. Shows the value history of quantities x, ax, Vx, Y, ay
and vy in the eight states. The value history shows the
quantities, their possible values, their actual value, and their
direction of change in each state. For instance, the quantity x
in state 1 is positive and its change of direction is zero. By
adding the correspondences, the motion in the vertical
direction is now half a period out of phase with the horizontal
motion. The sinusoidal patterns define the typical behavior
observed in simple harmonic motion.

The relationship between position, velocity, and
acceleration in simple harmonic motion can be summarized
as follows: when an object is at its equilibrium position, the
velocity is maximum and the acceleration is zero. For
example, in state 3, x is at its equilibrium point on the x-axis

and its direction of change is negative <0, —> and acceleration
in the horizontal direction (ax) is zero and its direction of
change is positive <0, +>, i.e., the moon is in its equilibrium
point on the x-axis and there is only gravitational pull in the
vertical direction. The velocity in the horizontal direction is
maximum in the negative direction <—, 0>, i.e., the moon is
moving towards the left.

As the object moves away from the equilibrium position,
the velocity decreases, and the acceleration increases in the
opposite direction. When the object reaches its maximum
displacement, the velocity becomes zero, and the acceleration
is at its maximum (in the opposite direction). The cycle
repeats as the object returns to the equilibrium position and
continues oscillating.
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Fig. 4. Values history of x, ax, vx, Y, ay and vy with regard to the
eight states of circular motion.

3 Elliptical motion

Elliptical motion can be described by twelve distinct
qualitative states (Fig. 5).

o YO0

O eV

Fig. 5. Elliptical motion of a star orbiting a black hole. A system
manifesting elliptical motion has twelve qualitatively distinct states.

A concrete example is a star orbiting a black hole, where the
black hole is in one of the focal points of the ellipse. Within
an elliptical orbit, as the distance from the black hole
changes, the gravitational force exerted on the star varies,
leading to corresponding alterations in acceleration. The
equilibrium between gravitational force and the star's



Table 3. Twelve qualitative states of elliptical motion. Quantities are position: x-axis (x) and y-axis (y), acceleration: horizontal (ax) and
vertical (ay), and velocity: horizontal (vx) and vertical (vy). Each quantity has a value and a direction of change, shown as <v,0>. Force

corresponds to acceleration. Force is not shown in this table.

State

Quantity 1 2 3 4 5 7 8 9 10 11 12

X <H 0> <+, —> <0,—> <> <o > <o > <, 0> <> <o > <o B 0,4 <+ >
y <0,+> <+ 4> <H+> <HA> O <+ 0> <+ > <0,—> <> < 0> <> < > < +>
ax <= 0> <+ <0,+> <+H+> <H 4> <H > <+ 0> <+ > <+ > <> <0,—> < >
ay <0,—> <> <> <> < 0> <> <0,+> <+ +> <+ 0> <H > <+ > <+ >
Vx <0,—> <> <, 0> <, +> < 4> < > <0,+> <+ +> <H 4> <H 4> <0,+> 0 <+ >
Vy <+,0> <+, > <+, > <+ > <0,—> < > < 0> < +> <0,+> <+ +> <+ 4> <+ +>

momentum gives rise to the elliptical shape of the orbit. The
specific shape of the ellipse depends on the starting situation
of the object's motion, such as its distance, velocity, and
direction relative to the central body. However, regardless of
the specific shape, the presence of twelve states remains
constant.

3.1 Expected qualitative states

Table 3 shows the values and directions of change for each
of the quantities in the twelve states. States 1, 2, 6, 7, 8 and
12 in elliptical motion are similar to states 1, 2, 4, 5, 6, 8 in
circular motion, respectively. In elliptical motion, there are
six distinct states (3, 4, 5, 9, 10, and 11) that do not exist in
circular motion, whereas states 3 and 7 in circular motion do
not exist in elliptical motion. Although the relationships
between position, force, acceleration, and velocity still
govern the movements in both the horizontal and vertical
directions, they are interdependent in a distinct manner
compared to circular mation.

3.2 Completing the model

Table 4 shows the correspondences of elliptical motion and
marks the differences with circular motion. Four bi-
directional correspondences are the same as in circular
motion: between x and ax, ax and vy, y and ax, and y and vy.
The other two correspondences (between x and vy, and ax and
vy) are different compared to circular motion: the values that
correspond may differ, the correspondence can change from
bi-directional to directed, or there may be no correspondence
at all. Because in circular motion all correspondences are bi-
directional, we will describe the specific changes for each
pair of corresponding values in the context of elliptical
motion below:
= xand vy
(i) In circular motion: if x=— then vy,=— In elliptical
motion there is no correspondence between x=— and
values of vy. That is, when the star is positioned on
the left side of the y-axis (x=—), its vertical velocity is
either downward (v,=— in states 6, 7 and 8), it has no
vertical velocity (vy=0 in states 4 and 10), or vertical
velocity is upward (vy=+ in states 3 and 11). In
elliptical motion the correspondence in the other

direction (if vy=— then x=—) is directed. When the star
its vertical velocity is downward vy=—, its position is
on the left side of the y-axis (x=—in states 6, 7 and 8).
This correspondence is directed because when the
star is on the left side of the y-axis (x=—), it can also
have no velocity in the vertical direction (vy=0 in
states 5 and 9) or its vertical velocity is upward (vy=+
in states 4 and 10).

(ii) In circular motion: if x=0 then vy=0. In elliptical
motion, when the star crosses the y-axis its vertical
velocity is upward (if x=0 then v,=+ in state 3 and
11). So the value of this correspondence changed and
it is now directed because the star its vertical velocity
is also upward (vw=+) when it is on the on the left
(x=—in states 4 and 10) or on the right side of the y-
axis (x=+ in states 1, 2, and 12). The correspondence
in the other direction (if vy=0 then x=0) changed its
value and is now directed. When the star has no

Table 4. Correspondences in elliptical motion. The
correspondences establish the co-occurrence of values of
quantities of the horizontal and vertical direction of elliptical
motion.

value X y ax ay Vx Vy
X - + 8
0 0" +12
+ = +2
y - +* +*
0 0" 0"
+ x s
ax - + +2
0 0 +12
+ _* 3
ay - +* *
0 * 0"
+ w -
Vx - + *
0 0" 0"
+ r .
vy _ 2 +2
0 12 +12
+ 3 3

" bi-directional correspondence; differences compared to circular
motion: Yvalue differs, 2 correspondence changed from bi-directional to
directed, * no correspondence anymore.



vertical velocity, its position is on the left side of y-
axis (if vy=0 then x=— in states 5 and 9). This
correspondence is directed because when the star its
position is on the left side of the y-axis (x=—), its
vertical velocity can be upward (vy=+ in states 4 and
10) or downward (vy=— in states 6, 7 and 8).

(iii) In circular motion: if x=+ then v,=+. In elliptical
motion, when the position of the star is on the right
side of the y-axis, its vertical velocity is also upward
(if x=+ then vy=+ in states 1, 2, and 12), but the
correspondence is now directed. It is directed because
the star its vertical velocity is also upward (vy=+) in
states 3 and 11 (x=0) and states 4 and 10 (x=—). The
correspondence in the other direction (if vy=+ then
x=+) does not exist in elliptical motion because the
star its vertical velocity is upward (vy=+) through the
full quantity space of x {-, 0, +}.

= ayand vy:

(i) In circular motion: if ax= then vy=+. In elliptical
motion, when the star its acceleration in the
horizontal direction is towards the left, its vertical
velocity is also upward (if ax=— then v,=+ in states 1,
2, and 12). However, this correspondence is directed
in elliptical motion because the star its vertical
velocity is also upward (vy=+) when horizontal
acceleration is to the left (ax=— states 4 and 10) or
when there is no horizontal acceleration (ax=0 in
states 3 and 11). Therefore, the correspondence in the
other direction (if vy=+ then a,=—) does not exist in
elliptical motion.

(if) In circular motion: if ax=0 then vy=0. In elliptical
motion, when the star has no acceleration in the
horizontal direction, its vertical velocity is upward (if
ax=0 then w=+ in states 3 and 11). This
correspondence is directed because the star its
vertical velocity is also upward (w=+) when
acceleration in the horizontal direction is to the left
(ax=—in states 2 and 12) and to the right (ax=+ in
states 4 and 10). The value of the correspondence in
the other direction (if vy=0 then ax=0) has changed.
When the star is has no velocity in the vertical
direction, the gravitational pull and thereby the
acceleration in the horizontal direction is toward the
right (if vw=0 then a,=+ in states 5 and 9). The
correspondence is directed, because when the star its
acceleration in the horizontal direction is to the right
(ax="*), velocity in the vertical direction can be
downward (vy=—in states 6, 7 and 8) or upward (vy=+
in states 4 and 10).

(iii) In circular motion: if ax=+ then vy=—. In elliptical
motion there is no correspondence between ax=+ and
values of vy. That is, when the star its horizontal
acceleration is to the right (ax=+), its vertical velocity
is downward (vy=— in states 6, 7 and 8), ), it has no

vertical velocity (v,=0 in state 3 and 11), or its vertical
motion is velocity (vy=+ in state 4 and 10). Therefore,
the correspondence in the other direction (if vy=— then
ax=+) is directed.

We can now add the correspondences between quantity
spaces of both directions (vertical and horizontal) to describe
elliptical motion (Fig. 6). As mentioned before, we do not
need to add all correspondences from Table 4 because adding
one correspondence can make another redundant. We add the
bi-directional correspondences that are the same as in circular
motion. We also add the directed correspondences that define
states 3 and 11 (if x=0 then vy=+) and states 5 and 9 (if vy=0
then x=-).
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Fig. 6. Qualitative representation of elliptical motion. The
simulation generates 12 states. The simulation result of state 1 is
shown.

3.3 Simulation of the complete model

The representation can be simulated with initial conditions
that correspond to state 1 in Fig. 5: x=<+,?>, y=<0,?> and vx
= <+,?>. The latter initial condition is needed because there
is no correspondence that automatically sets the value of v in
state 1.
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Fig. 7. Values history of x, ax, Vx, ¥, ay and vy with regard to the
twelve states of elliptical motion.

Fig 7. Shows the value history of quantities x, ax, Vx, Y, ay
and vy in the twelve states of elliptical motion. While motions



in both directions still exhibit sinusoidal patterns, it is
important to note that in the case of elliptical motion, the
system no longer strictly adheres to simple harmonic motion.
The varying changes in gravitational force introduce
complexities that deviate from the characteristics of circular
motion in both directions.

4 Conclusion and discussion

In this paper, we present qualitative representations of
circular and elliptical motion. The motions are depicted on a
x- and y-coordinate plane. This allows for the decomposition
of motion into a horizontal and vertical direction. To describe
the dynamics of circular and elliptical motion, the
representations include the quantities: position (x, y), force
(Fx, Fy), acceleration (ax, ay), and velocity (vx, vy). The
quantities have a quantity space that encompasses negative,
zero, and positive values, hence {—, 0, +}. Note that force,
acceleration and velocity are vectors and their qualitative
value indicate both value and direction.

We describe the dependencies between quantities and the
correspondences that exist in both circular and elliptical
motion. Specifically, we focus on the correspondences
between horizontal and vertical motion and highlight the
differences between circular and elliptical motion.

Circular motion can be described by eight qualitatively
distinct states, featuring six bi-directional correspondences
between the quantities in the horizontal and vertical direction.
When these correspondences are added to the representation,
the system's behavior follows a pattern of two simple
harmonic motions that are half a period out of phase.

Elliptical motion consists of twelve distinct qualitative
phases. The dependencies between the quantities in both
directions are similar to circular motion. However, compared
to circular motion, there are changes in two correspondences:
(i) between the horizontal position (x) and velocity in the
vertical direction (vy), and (ii) between acceleration in the
vertical direction (ax) and velocity in the vertical direction
(vy). These changes manifest in different ways: the values that
correspond may differ, the correspondence itself may
transition from being bi-directional to directed, or in some
cases, there is no correspondence at all between certain
values. These variations in correspondences highlight the
distinct nature of elliptical motion compared to circular
motion.

In conclusion, qualitative representations, such as the ones
presented in this paper, offer an alternative approach to
describing and understanding circular and elliptical motion,
bypassing the traditional mathematical methods. By
constructing qualitative representations, learners can gain
valuable insights into the behavior of these systems, fostering
a deeper comprehension of the concepts involved [Kragten &
Bredeweg, 2023]. Future research aimed at continuous
improvement of the pedagogical approach should examine

how students learn optimally by constructing such
representations and identify the essential support they need
during the learning process.
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