

Unravelling repurposing

a taxonomy for a promising circular business model strategy

Author(s)

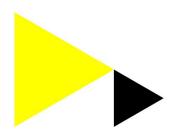
van Hees, Marco; Oskam, Inge

Publication date

2021

Document Version

Final published version


License

Unspecified

Link to publication

Citation for published version (APA):

van Hees, M., & Oskam, I. (2021). *Unravelling repurposing: a taxonomy for a promising circular business model strategy*. Paper presented at PLATE-2021, Ireland.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the library: https://www.amsterdamuas.com/library/contact, or send a letter to: University Library (Library of the University of Amsterdam and Amsterdam University of Applied Sciences), Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

4th PLATE 2021 Virtual Conference Limerick, Ireland - 26-28 May 2021

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

Marco van Hees^(a), Inge Oskam ^(a)

a) Amsterdam University of Applied Sciences, Amsterdam, The Netherlands

Keywords: Circular economy; circular business model; business modelling; repurposing.

Abstract

The Dutch government and leading academics in the field of circular economy propose that "repurposing", i.e., finding new usages for discarded material, is important to reduce resource usage. Waste collectors, municipalities and start-ups increasingly find ways to develop circular business models, aiming for minimum loss of material integrity. Repurpose is a circular business model strategy which entails using a discarded product or its parts in a new product with a different function.

The aim of this research is to gain a better understanding of this promising but academically underexposed circular strategy by empirically exploring its key characteristics and developing a taxonomy that reflects the scope and potential of the concept. The taxonomy development was based on clustering and comparing 96 case examples using key characteristics and critical factors empirically collected by means of 11 semi-structured expert interviews. The taxonomy was iteratively refined and validated by means of workshops with experts.

This paper proposes a taxonomy and a comprehensive definition for repurposing. The Repurpose taxonomy distinguishes three main categories with increasing levels of material integrity: "Reprocess", "Reshape" and "Recontextualize". The taxonomy provides a refinement of existing circular business model patterns and frameworks for closing material loops strategies. It shows how repurposing may exploit the creative potential of design to fill the gap between reuse and recycling by retaining previously added value with three levels of physical adjustment.

Literature background

The Circular Economy has been positioned as a potential lever for sustainability and business innovation and sustainable business models and circular business models are needed to facilitate the transition towards a circular economy (WBCSD, 2015; Ellen MacArthur Foundation, 2017). Sustainable business models offer long-term solutions based on sustainable value and pro-active stakeholder involvement, beyond customers shareholders and including the natural environment (Schaltegger, Hansen & Lüdeke-Freund, 2016). Circular business models are a subgroup of sustainable business models that specifically address the reduction of resource usage by means of circular loop strategies, based on narrowing, closing and slowing resource loops (Bocken, De Pauw, Bakker & Van der Grinten, 2016).

The Dutch government proposed a waste hierarchy based on 9 circularity R-strategies (Potting et al., 2018; Reike, Vermeulen & Witjes, 2018) to minimize resource input and waste (see Table 1). Higher strategies are considered more desirable from an environmental and business perspective and although most strategies have gained attention in the field of the Circular Economy, repurposing remains underexposed.

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

		R-strategy	Usage	Function	Resource
Smarter product use and manufacture	RO	Refuse	abandon	same	different
	R1	Rethink	intensify	same	same
	R2	Reduce	intensify	same	fewer
duct	R3	Re-use	extend	same	same
of pro arts	R4	Repair	extend	same	same
lifespan of p and its parts	R5	Refurbish	extend	same	same
Extend lifespan of product and its parts	R6	Remanufacture	extend	same	same
Exte	R7	Repurpose	extend	new	same
ull ion of ials	R8	Recycle	new	new	same
Usefull application of materials	R9	Recover	new	new	same

Table 1. circularity R-strategies and position of repurposing (adapted from Potting et al. (2016))

Repurposing entails the re-use of a discarded technical product or its components in a new function (Sieffert, Huygen & Daudon, 2014; Potting et al., 2018; Kirchherr, Reike & Hekkert, 2017). Repurposing offers eco-effective solutions (Braungart, McDonough & Bollinger, 2007), aiming at maintaining high added-value products on the market as long as possible to ultimately delay recycling or disposal (Bauer, Brissaud & Zwolinski, 2017). Recycling is still very much part of the linear economy and sometimes uses more energy than the production of new materials, (Potting et al., 2018; Allwood, Ashby, Gutowski, & Worrell, 2011) which makes repurposing preferable from an environmental and perspective.

Whereas repair, refurbish and remanufacturing focus at the original functional value of a product, repurposing often entails new value creation with a minimum loss of material integrity. Examples cited in literature include transforming wind blade parts into building structures (Leahy, 2019; Bank, Arias, Gentry & Al-haddad, 2018), turning old smartphones into parking meters or educational applications (Zink, Maker, Geyer, Amirtharajah & Akella, 2014; Li et al., 2010), and EV car batteries into energy storage systems (Schulz, Bey, Niero & Hauschild, 2020; Richa, Babbitt, Nenadic & Gaustad, 2017). Other examples from practice include transforming old truck tarpaulins into fashionable bags, iconic building floors into

high-end furniture, and national timetables into trendv office supplies. Repurposing is popular among industrial design and artists (Reike, Vermeulen & Witjes, 2018), and has potential as a business model strategy for sustainability in the transition to a circular economy (Lüdeke-Freund, Gold & Bocken 2018; Sieffert et al., 2014). However, repurposing of technical materials is less used than other circularity strategies (Reike et al., 2018) and remains understudied in business model literature (Lüdeke-Freund et al., 2018; Kurt. Cung. Mangione. Cortes-Cornax & Front. 2019). Moreover, there is a range of academic interpretations of repurposing, for example with regard to various levels of product integrity (Sihvonen & Ritola, 2015), various strategic goals (Bauer et al., 2017), or its multiple linkages to other R-strategies (Coughlan, Fitzpatrick & McMahon 2018; Lüdeke-Freund et al., 2018; Kurt et al., 2019).

Therefore, the aim of this paper is to provide insight in the main characteristics of repurposing as a business model strategy and to propose a comprehensive definition and taxonomy for this promising, but academically underexposed, circular strategy.

Research design

After exploring relevant literature, a qualitative research approach was used that consisted of two stages. In the first stage key characteristics and critical factors were derived from interview data and literature. In the second stage the key characteristics were used to collect more than 100 empirical cases of repurposing that formed the basis for the development of a taxonomy for repurposing.

Expert interviews

The main method of inquiry is based on expert interviews and data collected from academia and practitioners involved in circular economy business modelling and design strategies for materials. technical To get а broad representation from science and practice, 11 were experts selected that varied background, sector and role. The interviewees included experienced senior business consultants, business owners, CEO's and professors with a solid background in product design and/or business modelling (see Table 2). The interviews had an average length of 45 minutes and covered the following topics:

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

- definition and characteristics of repurposing
- critical factors
- examples of repurposing

Nr	Interviewees	
1	Professor in product design	
2	Founder Circular Business Consultancy	
3	Senior Sustainability Consultant	
4	Founder Circular Business Consultancy	
5	Founder Circular Design Company	
6	Founder Circular Design Company	
7	Founder Circular Business Consultancy	
8	Senior Consultant Manufacturing Industry	
9	Senior Consultant Waste Management	
10	Founder Circular Design Company	
11	Professor in Circular Business	

Table 2. interviewees expert interviews

Data analysis

The interviews were audio-recorded. summarized and transcribed ad verbatim with the consent of all participants. Software for qualitative data analysis (MAXQDA) was used to assist qualitative data analysis. The analytical process consisted of three stages, constituting open coding, axial coding and selective coding (Strauss & Corbin, 1990). Using a pattern-matching logic for explanation building (Eisenhardt & Graebner, 2007), key characteristics, critical factors in value creation and delivery processes and examples of repurposing were identified.

Taxonomy development

To develop a taxonomy, more than 100 cases were initially collected from literature, university archives, web search, and the interviews. The cases were archived in a database by means of the following variables: origin, characterisation of resource, application, characterisation of physical production, business model aspects, Impact, sources/more information.

All cases were subject to a critical reflection by the researchers with regard to acceptability of repurposing case examples in this research. Only examples related to a scalable business model and industrial design were accepted, e.g. artwork, Do-It-Yourself or one-offs were excluded. This led to a (growing) database with 96 cases in April 2021.

The taxonomy was iteratively developed, refined and validated in various workshops:

- Two card-sorting sessions, one with researchers and one with experts clustering cases by means of 6 profile diagrams based on the critical factors identified in the interviews.
- Two round-table discussions with researchers to 1) develop the taxonomy based on the clusters found and 2) classify all cases and refine the taxonomy
- Online workshop with experts to validate the taxonomy

Results

With regard to the circular economy business model (CEBM), we found a number of key characteristics and critical factors based on the interviews and exploration of characteristics in available literature.

Key characteristics

The characteristics that distinguish repurposing from other circularity strategies are particularly related to two aspects. Hence, we propose that repurposing typically involves a change of the value proposition and retention of value that was added in previous usage and production processes (see Table 3).

	Characteristics	Interview & Literature	
proposition	New context (e.g. new target audience, new market)	1, 2,10 (Sihvonen et al., 2015; De Hollander et al., 2017; Bauer et al., 2017; Whalen, 2019)	
Change of value proposition	New function (e.g. new goal, new application)	2, 3, 5, 6,7, 8, 9, 11 (Sieffert et al., 2014; Kurt et al., 2019; Potting et al., 2017; Bauer et al., 2017)	
Value retainment	Objective physical integrity (e.g. material destruction, ecoeffectiveness)	1, 2, 3, 5, 6, 7, 8, 9, 10,11 (Bauer et al., 2017; Allwood et al., 2011; Mestre & Cooper 2017; Braungart et al., 2007)	

4th PLATE Virtual Conference Limerick, Ireland, 26-28 May 2021

Marco van Hees, Inge Oskam

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

Table 3. characteristics based on change of the value proposition and value retainment

Critical factors

With regard to critical factors for repurposing, two main categories emerged from the data which are related to complexities in repurposing value creation and delivery processes:

- Cross-sector collaboration
- Resource availability

	Critical factors	Interview
collaboration	New integral logistics processes (e.g. new cross-sector forwarding and reverse logistics)	1, 3, 6, 7, 8, 9, 10
Cross-sector collaboration	New partnerships (e.g. new revenue models, launching customer, new channels, new competences)	1, 3, 4, 6, 7, 8, 9, 10, 11
Resource availability	Quality (e.g. consistency, complexity, uniqueness, functionality)	4, 5, 6, 7
	Quantity (dis)continuity, timing/synchronicity, feedstock scalability, visibility & accessibility	1,2, 3, 5 7, 9

Table 4. critical factors based on cross-sector collaboration and resource availability

Although limited resource availability decreases options for upscaling the business model, some interviewees mentioned that, typically for repurposing, limited resource availability may also create opportunities for valorisation with 'limited editions'. However, this also carries a risk of a rebound-effect (Zink & Geyer, 2017),

for example by replacing popular discarded products or components by virgin material.

Taxonomy for repurposing

Based on these characteristics, critical factors and a cross-case analysis of 96 cases, a taxonomy for repurposing is proposed, consisting of three main categories: Reprocess, Reshape and Recontextualize and four related categories (see Figure 1).

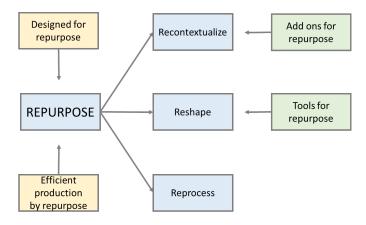


Figure 1. Repurposing Taxonomy: three main categories for repurposing and four related categories.

The three main categories - Reprocess, Reshape and Recontextualize – each entail new value propositions with increasing degrees of value retention. In Reprocess the product or its components undergo relatively significant physical modifications, but specific functional and visual properties of components or materials are used for the production of highervalue products. Other than with recycling, with Reprocessing the material of the discarded product or component is still recognizable, for example colorful flip flops produced from waste rubber found on African beaches each being unique and appealing to a sustainability-minded target audience. In Reshape, the product or its components undergo minor physical modifications and are used for a new application inspired by the emotional value related to the unique origin of the product, the original form or appearance of the product or component, and/or the functionality or the properties the product or component offers. An example that uses a combination of these characteristics is a tray made of the national railway timetables, using the color and material

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

properties as well as the emotional value related to the iconic timetables. In Recontextualize the discarded product is used without physical modifications in a new context, however with a new value proposition which is closely related to its original usage. A car battery, for example, may no longer be able to fulfil its original function properly, but is with minor alterations usable in a less demanding context such as electricity storage in buildings.

Additional to the three main categories, four separate product categories were identified, which merely *facilitate* repurposing. For example, "add-ons for repurpose" are products that facilitate recontextualizing of discarded products (for example a cap that makes a spray bottle out of a soda bottle), and "tools for repurpose" facilitate the making of a new product from discarded materials (for example a kit to make guitar picks out of cred-it cards). Additionally, some products were found that were specifically designed upfront for next-life repurpose (Bauer et al., 2017; den Hollander et al., 2017), whereas repurposing production waste is aiming at more efficient processes.

Discussion

Our research set out to explore repurposing as a promising, yet understudied circular business model strategy.

On the basis of our findings, the following comprehensive definition for repurposing is proposed: "a business model strategy that applies a discarded product or its components for a function or context, other than its originally intended value proposition, and in doing so retaining value that was added by previous value creation, value delivery and use processes and adding new value".

The taxonomy reveals the broad scope and creative potential of the repurposing concept and provides a refinement of the strategic options to retain value by applying the cascading and repurposing circular economy business model pattern (Lüdeke-Freund et al., 2018). The results show that this business model pattern is not exclusive for biological cycles, but is also relevant for technical nutrient cycles. The main categories Reprocess and Reshape reflect the creative potential of design to fill the gap between reuse and recycling (e.g. Reike et al., 2018; Mills et al., 2012), and provide promising possibilities to retain value

that was added in previous usage or value creation and delivery processes. The category Recontextualize reflects the definition of repurpose by Sihvonen and Ritola (2015) with no or minor adjustments to the original product design.

Our findings suggest that the repurposing categories Recontextualise and Reshape may represent a higher level of circularity then just above recycling in the hierarchy. These categories could be equivalent to re-use, repair, refurbish and remanufacture (Coughlan et al., 2018; Lüdeke-Freund et al., 2018; Kurt et al., 2019) and create new opportunities for value makes additional creation. This repurposing particularly promising for the development of new circular economy business models, either by prolonged use and reuse of goods over time ('slowing loops') or the reuse of materials through recycling ('closing loops') (Bocken et al., 2016). However, since rebound may be a relevant risk in successful repurposing business models, additional research should investigate how, and under which conditions, repurposing could be placed higher on the circularity ladder.

The taxonomy may be used as a framework to study circular economy business models and circular supply chains for each identified repurpose category based on design options and patterns found in state-of-the-art literature. We propose follow-up research by means of indepth case-studies for each repurposing category in order to identify whether the circular economy business model (CEBM) design options and patterns proposed by Lüdeke-Freund et al. (2018) can also be applied to the categories in the repurposing taxonomy, or whether additional CEBM design options and patterns are necessary to facilitate the development of business models on a micro-level.

Moreover, each repurposing category could benefit from more in-depth case studies to explore repurpose-specific constraining and driving mechanisms. For example, perceived supply chain risks related to usage of material in a different context play an important role. Further research could focus specifically on the dynamics and mechanisms in cross-sector collaborations for various repurposing categories.

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

References

- Bank, L. C., Arias, F. R., Gentry, R., & Al-haddad, T. (2018). Reusing Composite Materials from Decommissioned Wind Turbine Blades. *Non-Conventional Materials and Technologies*, 7(October 2018), 695–705. https://doi.org/10.21741/9781945291838-67
- Bauer, T., Brissaud, D., & Zwolinski, P. (2017).

 Design for High Added-Value End-of-Life

 Strategies. https://doi.org/10.1007/978-3-31948514-0
- Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. *Journal of Industrial and Production Engineering*, 33(5), 308–320. https://doi.org/10.1080/21681015.2016.11721 24
- Braungart, M., McDonough, W., & Bollinger, A. (2007). Cradle-to-cradle design: creating healthy emissions a strategy for ecoeffective product and system design. *Journal of Cleaner Production*, *15*(13–14), 1337–1348.
- https://doi.org/10.1016/j.jclepro.2006.08.003
 Coughlan, D., Fitzpatrick, C., & McMahon, M.
 (2018). Repurposing end of life notebook
 computers from consumer WEEE as thin
 client computers A hybrid end of life
 strategy for the Circular Economy in
 electronics. *Journal of Cleaner Production*,
 192, 809–820.
- https://doi.org/10.1016/j.jclepro.2018.05.029 den Hollander, M. C., Bakker, C. A., & Hultink, E. J. (2017). Product Design in a Circular Economy: Development of a Typology of Key Concepts and Terms. *Journal of Industrial Ecology*, 21(3), 517–525. https://doi.org/10.1111/jiec.12610
- Eisenhardt, K. M., & Graebner, M. E. (2007).
 Theory Building from Cases: Opportunities and Challenges Linked references are available on JSTOR for this article: THEORY BUILDING FROM CASES:
 OPPORTUNITIES AND CHALLENGES.
 Organizational Research Methods, 50(1), 25–32.
- Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127(April), 221– 232. https://doi.org/10.1016/j.resconrec.2017.09.00
- Kurt, A., Cung, V. D., Mangione, F., Cortes-Cornax, M., & Front, A. (2019). An Extended Circular Supply Chain Model Including Repurposing Activities. 2019 International Conference on Control, Automation and Diagnosis, ICCAD 2019 - Proceedings, July. https://doi.org/10.1109/ICCAD46983.2019.90 37929

- Leahy, P. G. (2019). End-of-life Options for Composite Material Wind Turbine Blades: Recover, Repurpose or Reuse? In 14th SWEDES Conference (pp. 1–9). https://static1.squarespace.com/static/5b324c 409772ae52fecb6698/t/5dab2848c20b461ef1 75cdcb/1571498056954/Leahy_SDEWES_Pa per2019 v2.pdf
- Li, X., Ortiz, P. J., Browne, J., Franklin, D., Oliver, J. Y., Geyerz, R., Zhou, Y., & Chong, F. T. (2010). Smartphone evolution and reuse: Establishing a more sustainable model. *Proceedings of the International Conference on Parallel Processing Workshops*, 476–484. https://doi.org/10.1109/ICPPW.2010.70
- Lüdeke-Freund, F., Gold, S., & Bocken, N. M. P. (2018). A Review and Typology of Circular Economy Business Model Patterns. *Journal of Industrial Ecology*, *00*(0), 1–26. https://doi.org/10.1111/jiec.12763
- Mestre, A., & Cooper, T., (2017) Circular Product Design. A Multiple Loops Life Cycle Design Approach for the Circular Economy, *The Design Journal*, 20:sup1, S1620-S1635, DOI: 10.1080/14606925.2017.1352686.
- Mills, R., & Ag, M. (2012). What It Means to Go Green: Reduce, Reuse, Repurpose, and Recycle. June.
- Potting, J., Hanemaaijer, A., Delahaye, R., Hoekstra, R., Ganzevles, J., & Lijzen, J. (2018). Circulaire economie: wat we willen weten en kunnen meten.
- Reike, D., Vermeulen, W. J. V., & Witjes, S. (2018). The circular economy: New or Refurbished as CE 3.0? Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling, 135(February 2017), 246–264. https://doi.org/10.1016/j.resconrec.2017.08.02
- Richa, K., Babbitt, C. W., Nenadic, N. G., & Gaustad, G. (2017). Environmental trade-offs across cascading lithium-ion battery life cycles. *International Journal of Life Cycle Assessment*, 22(1), 66–81. https://doi.org/10.1007/s11367-015-0942-3
- Schaltegger, S., Hansen, E. G., & Lüdeke-Freund, F. (2016). Business Models for Sustainability: Origins, Present Research, and Future Avenues. *Organization and Environment*, 29(1), 3–10. https://doi.org/10.1177/1086026615599806
- Schulz, M., Bey, N., Niero, M., & Hauschild, M. (2020). Circular economy considerations in choices of LCA methodology: How to handle EV battery repurposing? *Procedia CIRP*, 90, 182–186.
- https://doi.org/10.1016/j.procir.2020.01.134
 Sieffert, Y., Huygen, J. M., & Daudon, D. (2014).
 Sustainable construction with repurposed materials in the context of a civil engineering-architecture collaboration. *Journal of Cleaner*

4th PLATE Virtual Conference Limerick, Ireland, 26-28 May 2021

Marco van Hees, Inge Oskam

Unravelling Repurposing - A taxonomy for a promising circular business model strategy

Production, 67, 125-138.

https://doi.org/10.1016/j.jclepro.2013.12.018

Sihvonen, S., & Ritola, T. (2015). Conceptualizing ReX for aggregating end-of-life strategies in product development. *Procedia CIRP*, 29, 639–644.

https://doi.org/10.1016/j.procir.2015.01.026

Zink, T., & Geyer, R. (2017). Circular Economy Rebound. *Journal of Industrial Ecology*, 21(3), 593–602. https://doi.org/10.1111/jiec.12545

Zink, T., Maker, F., Geyer, R., Amirtharajah, R., & Akella, V. (2014). Comparative life cycle assessment of smartphone reuse:

Repurposing vs. refurbishment. *International Journal of Life Cycle Assessment*, 19(5), 1099–1109. https://doi.org/10.1007/s11367-014-0720-7

Acknowledgments

This research is co-funded by Regieorgaan SIA, part of Dutch research council (NWO)