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Abstract

Electric vehicles and renewable energy sources are collectively being developed as a synergetic
implementation for smart grids. In this context, smart charging of electric vehicles and vehicle-to-grid
technologies are seen as a way forward to achieve economic, technical and environmental benefits. The
implementation of these technologies requires the cooperation of the end-electricity user, the electric
vehicle owner, the system operator and policy makers. These stakeholders pursue different and
sometime conflicting objectives. In this paper, the concept of multi-objective-techno-economic-
environmental optimisation is proposed for scheduling electric vehicle charging/discharging. End user
energy cost, battery degradation, grid interaction and CO; emissions in the home micro-grid context are
modelled and concurrently optimised for the first time while providing frequency regulation. The results
from three case studies show that the proposed method reduces the energy cost, battery degradation,
CO; emissions and grid utilisation by 88.2%, 67%, 34% and 90% respectively, when compared to
uncontrolled electric vehicle charging. Furthermore, with multiple optimal solutions, in order to achieve
a 41.8% improvement in grid utilisation, the system operator needs to compensate the end electricity
user and the electric vehicle owner for their incurred benefit loss of 27.34% and 9.7% respectively, to

stimulate participation in energy services.
Highlights

» Optimisation of energy cost, battery degradation, grid utilisation and CO; emission
o The conflicts among objectives were addressed with multi-objective optimisation

o A multi-criteria decision making process was tailored to the stakeholders

! Corresponding author: ridoy.das@northumbria.ac.uk, Northumbria University, Department of Mathematics
Physics and Electrical Engineering, Ellison Place NE1 8ST, Newcastle upon Tyne, United Kingdom.



« Frequency regulation provision was overall profitable for electric vehicle owners

o The decision makers must cooperate to achieve societal benefits

Nomenclature
Acronyms
AHP Analytical hierarchy process
ANEC Augmented non-dominated e-constraint
method
DM Decision maker
DN Distribution network
DOD Depth of discharge
DSO Distribution system operator
EOL End of life
EV Electric vehicle
FFR Firm frequency response
ICE Internal combustion engine
LV Low Voltage
MCDM Multi-criteria-decision-making
MOO Multi-objective optimisation
MOTEEO Multi-objective techno-economic-
environmental optimisation
PV Photovoltaic
RES Renewable energy source
SOC State of charge
TSO Transmission system operator
V2G Vehicle-to-grid
V2H Vehicle-to-home
Sets and indices
t Current time step
At Time interval, 15 min.
N* Total number of simulated time steps
N¢ Total number of steps from arrival to
departure
Constants
n Efficiency of the EV charger
EEV EV Battery capacity (kWh)
EEV Minimum EV battery capacity limit
(kWh)
f Upper frequency limit of droop-
controller (Hz)
f Lower frequency limit of the droop-
B controller (Hz)
PEV Maximum charging/discharging rate of
the EV charger (kW)
Parameters
s Real-time price signal at time t (£/kWh)
P2 Electricity demand at time t (kW)
PPV PV generation at time t (kW)




efWh Specific CO; emission (kgCO2/kWh)

cB Cost of the battery (£/kWh)

TB Temperature of the battery (°)

Bios Fitting parameters of the battery
degradation model

regt Regulation signal for FFR (kW)

f Electrical frequency (Hz)

k¢ Droop coefficient (kW/Hz)

t? Arrival time of the EV

td Departure time of the EV

AEY Availability of the EV at time t

EEV.a Energy of the EV upon arrival (kWh)

EtTip Energy required for the next trip (kWh)

Functions

ce Energy cost of a H-MG (£/kWh)

c¢ Battery degradation cost (£/kWh)

P¢ Grid net exchange (kWh)

[E¢02 CO; emissions of the H-MG (kgCOy)

EEY Energy of the EV at time t (kWh)

Ef Lifetime energy throughput under a
certain charging condition (kWh)

nEoL Number of cycles before battery EOL

af Battery degradation coefficient

Decision variables

PEV*, PEV- Charging/discharging of EV (kW)

1. Introduction

The uptake of electric vehicles (EVs) is rapidly increasing around the world with the concurrent
development in available renewable energy sources (RES) [1]. In this context, a number of stakeholders
can achieve benefits; these are the final electricity consumer, the EV owner, the electricity system
operators and the policy makers, which collectively will be referred hereby as ‘stakeholders’. Smart
charging and Vehicle-to-Grid (V2G) are implemented to achieve electricity cost reduction, EV battery
degradation minimization, CO> emission reduction and grid impact optimization. Due to the inherent
conflict of the aforementioned dimensions, in order to achieve benefits along one dimension, others
must be traded off. In this context, the application of multi-objective optimization (MOO) methods is
crucial. The different objectives of the optimization should be modelled based on the goals the
stakeholders, who then take a decision on the most suitable EV utilization. In this paper, the concept of
multi-objective-techno-economic-environmental optimisation (MOTEEO) is proposed by connecting
the stakeholders involved in smart grids with optimal control of EVs. With this innovative concept, EV
charging/discharging is controlled to simultaneously optimize technical, economic and environmental

benefits.

Several studies have addressed optimal charging scheduling for single objectives and multiple

objectives. The grid impact has been widely addressed or identified as a critical objective. In [3], the



power flow in a distribution network RES was optimally controlled by scheduling EV charging. In [4],
Voltage deviation caused by excessive PV generation was successfully mitigated by discharging the
batteries of EV fleets. In [5], the electricity demand of a residential building was satisfied with a
combination of PV system and EVs. The availability of EVs and their capacity to provide demand peak
shaving was investigated in [6]. In the framework proposed in [7], by making use of electricity demand
and PV generations forecasts, an aggregator and several EV agents performed load levelling. A
decentralised optimisation process for EV charging scheduling was proposed in [8]. Although this work
did not consider RES, the proposed method effectively performed load-levelling with a fleet of EVs. A
decentralised approach was also proposed in [9] to optimally charge EVs in order to reduce demand
peak and variance. Power imbalance reduction was addressed in an optimisation process performed in
[10]. This proposed method reduced the mismatch between PV generation and electricity demand. A
number of studies also aimed at minimizing the EV charging cost [2] and energy arbitrage [11]. In [12],
EV charging/discharging was controlled to implement optimal energy management in a micro-grid with
availability of wind generation. This method reduced the energy cost of the building. Provision of
frequency regulation was explored in [3]. However, a major lack of research on battery degradation
minimization has been identified, as none of the aforementioned studies addressed this issue. Indeed,
only [2], [3] and [11] included battery degradation in their economic analysis but only as a constant
parameter, based on estimated cycle life and unaffected by the charging schedule. Moreover, apart from

[17], the other studies implementing single-objective optimisation did not minimise CO, emissions.

Only a number of studies in recent literature have applied MOO in the context of smart grids and EVs.
In [13] grid load variance was optimised while providing Voltage control by scheduling grid-connected
EVs with a centralised approach. However, the objective functions were sequentially optimised and,
since the results of the top layer fed the lower layer, the objectives did not conflict with each other. In
the approach proposed in the present paper, the critical objective of battery degradation is modelled and
optimised whilst ensuring that the transportation requirements of the individual EV are satisfied. This
is possible only with a decentralised approach and a multi-objective optimisation as proposed in this
paper. Optimal deployment of charging infrastructure to minimise annual investment cost and maximise
annual captured traffic flow was proposed in [14]. However, the proposed approach performed a
centralised decision plan and did not provide optimal charging scheduling, which would affect the
individual EV owner. In [15], EV battery swapping stations were simulated in a distribution network in
order to minimize battery charging cost, power loss cost, to flatten the network Voltage profile and
release network capacity. Although this study consider the important aspect related to grid constraints,
they do not take into account the interests of the EV owner as done in this paper by minimising battery
degradation, and do not address environmental objectives as we do with CO» emission reduction. In
[16], optimal scheduling of energy storage systems by minimising both battery calendar degradation

and energy costs was implemented. However, in their proposed methodology, the two objectives were



linearly combined. Such a method is not feasible for other objectives such as load levelling because
appropriate, and often unknown, weights must be assigned. Furthermore, this approach does not present
a Pareto analysis, as we do in our proposed framework, which is essential for multi-criteria-decision
making where several objectives are involved. In [17], a notable approach of scheduling EV charging
to minimize cost and emission was proposed, which accounted for two out of the four objectives
considered in our work. However, their proposed method did not consider battery degradation nor the
impact of EV charging on the grid. In [18] an improved optimal power flow in a distribution network
with EVs, wind energy and PV was implemented to address CO; emission and operational cost. The
uncertainty regarding RES generation and EV availability considered with a Monte Carlo simulation
and multi-objective genetic algorithm was implemented to address the two objectives. This study was
able to highlight the trade-off between the two objectives, however, as the authors themselves point out,
their centralised approach suffers from high computational expense, at the point that parallel
computation was proposed as a solution to reduce this burden. Furthermore, battery degradation was
not addressed in their work. Fuel consumption and battery degradation and were linearly combined for
optimal drive-train energy management strategy in [19]. Although the approach proposed in the paper
is effective in optimising the two objectives, the interaction with the grid was not investigated since no
charging scheduling was implemented. Load variance and charging cost were minimised with a
weighted sum method in [20] with a decentralised approach. Although some measures to reduce battery
degradation were mentioned, i.e. reduce the maximum SOC level, it was not optimised as a separate
objective. Similarly no mention was made on the environmental footprint of the charging process, and
the weighted sum method may not find Pareto solutions if the final objective function is not convex; in

general e-constraint is superior as it overcomes such problem

Game theory based approaches have also been implemented to energy management (see [21]).
However, under MOTEEO every charging schedule leads to different outcomes (modelled by different
objective functions), and we propose a framework for decision making that agrees on a single schedule
in a set of equally efficient schedules, which constitute a Pareto frontier. This is different from game

theory, where different players with different strategies seek a Nash equilibrium.
As evidenced by the literature review, the main research gaps can be summarised as:

— Lack of a holistic solution to simultaneously optimize the critical objectives of energy cost, battery
degradation, grid net exchange and CO, emissions. None of the studies have addressed the trade-
off between these objectives. Indeed, only a subset of the aforementioned objectives has been
optimised.

— There is an evident lack of studies addressing battery degradation minimisation as an optimisation

process applied to EV charging.



— CO; emission has been seldom addressed as an objective, and its conflict with other objectives has
not been satisfactorily highlighted.
— The trade-off between ancillary service provision and other energy services has not been explicated
in the literature.
— A decision making process tailored to key smart grid stakeholders, namely end electricity user, EV
owner and electricity system operator has not been proposed in previous works.
Therefore, the purpose of the present work is to address this research gap and the key contributions may
be summarised as follows:
— Simultaneous optimisation of electricity cost, battery degradation, grid net exchange and CO2
emissions has been performed.
— A dynamic battery model (using empirical data), depicting the impact of three key stress-factors,
has been implemented in order to minimize cycle degradation as a key objective.
— The use of EV batteries to provide ancillary services to the grid has been considered as an
additional objective and its implications on other objectives has been investigated.
— The conflict of interest among the end electricity user, the EV owner and the system operator has
been highlighted and addressed using analytical hierarchy process (AHP) and utility function.
The remainder of the paper is organised as follows: in Section 2, the MOTEEO problem is formulated
in accordance with the priorities of five stakeholders. Section 3 details the analytical formulation of the
four objectives of the involved stakeholders and ancillary services along with the constraints of the EV
model, the MOO and multi-criteria decision-making (MCDM) approach. Section 4 elaborates on the
case studies, presenting and discussing the achieved results whilst providing advice to decision makers.

In Section 5 the conclusions on the implementation of MOTEEO and its advantages are drawn.

2. Problem statement

The implementation of smart grids brings together several stakeholders at different scales. From the
consumer-facing level to higher ones the relevant stakeholders are the EV owner, the end electricity
user (also owning the PV system and the household electricity appliances), aggregators, distribution
system operator (DSO), transmission system operator (TSO) and regulatory bodies — with the latter
enforcing environmental targets. Consequently, a variety of stakeholders, which would not necessarily
collaborate, are brought together and each of them have their own aims/objectives. Some of these are

aligned, whereas in some cases the objectives from the different stakeholders may be in conflict.

In this paper we propose a decentralised optimisation framework for day-ahead EV
charging/discharging scheduling, where the information is gathered locally and processed by the
individual agents that are in charge of the single home-micro-grids (H-MG). This choice is motivated
by the onerous communication network, data privacy and safety issues entailed by a centralised

approach [22] (also see [18]). Furthermore, the proposed approach facilitates the scalability of the



optimisation algorithm with high EV penetration, where the computational burden is shared and not
concentrated as in centralised management frameworks. The approach proposed in this paper is
particularly suitable for peer-to-peer energy trading [23], as each agent maximises the benefit of the
respective user and with a local energy market in place, the users could trade energy under regulated

price signals.

We define EV charging/discharging strategies and services, to benefit a variety of stakeholders
including smart charging, V2X (vehicle to archetype), smart grid services, such as energy arbitrage and
ancillary services (e.g. frequency response). The services that we consider ranging from the
transmission level, to services behind the meter are: ancillary services (involving the TSO), peak
shaving, (involving the DSO), energy bill reduction and energy-autonomy maximisation, both
involving the end-electricity user and the policy-maker (since increased energy autonomy achieves

emission reduction).

As EV batteries are costly, utilizing them for the aforementioned services may cause additional battery
wear. We safeguard the EV owner by minimizing battery degradation with an empirical dynamic model.
The aforementioned services are provided by considering transportation as the main purpose for EVs,
therefore this is taken as a constraint in the EV model. The proposed framework prioritises the inviolable
EV travelling requirements, hence the charging scheduling are always compatible with the EV owner’s

need. From the end user to the DSO, the objectives modelled in this work are:

— Objis the energy cost of the dwelling, which is modelled based on a real-time price and taking into
account the local PV generation.
— Obj, is the battery degradation incurred for EV charging/discharging both for transportation
requirement and energy services.
— Obj; is the grid net exchange, which account for the interaction of the power absorbed/injected by
the dwelling from/to the grid.
— Obj, is the CO; emission caused by absorbing energy from the grid.
It should be pointed out that although the present work models four objectives, as will be explained in
Section 4.1, under suitable assumptions, Obj; and Obj, are comparable. Hence, in the proposed

methodology, Obj,, Obj, and Obj; will be optimised.

Another critical stakeholder is the TSO, who procures ancillary services to ensure stable operation of
the transmission network. As transmission and distribution networks are connected, the TSO is also
considered here as a stakeholder. Therefore, ancillary service provision is modelled in the current work

as an additional scenario; more details are provided in section 3.5.

We then propose a multi-objective techno-economic-environmental optimisation (MOTEEO)

framework and apply it to three case studies with two scenarios to provide the stakeholders with a



comprehensive assessment of the prospective benefits. Table 1 outlines the case studies and the

scenarios simulated in the current work.

Table 1 Case study and scenarios for MOTEEO

Scenario i) without ancillary Scenario i) with ancillary

service service
Case study 1: home-micro-grid Bidirectional home charging Bidirectional home charging
(H-MG)
Case study 2: distribution grid a) Uncontrolled charging e) Bidirectional home charging

b) Smart charging

c) Bidirectional home charging

d) Bidirectional home and

work charging
Case 3: utility function in Bidirectional home charging
home-micro-grid

In the first case study, we highlight the conflicts among the objectives of the stakeholders (and ancillary
service), and implement MOTEEO to a single dwelling with one EV. We evaluate two scenarios, aiming
to show the additional benefits of ancillary service provision. To quantify the benefits on a higher level,
i.e. for the DSO, we then apply MOTEEO to an electricity distribution system with multiple dwellings
and EVs. Smart charging and bidirectional charging strategies are applied in home and workplaces. In
the case 2d, the EV can be charged at the workplace where we assume a PV system is present. Finally,
we consider case study 3, where the utility function can be applied to combine the energy cost, battery
degradation and peak demand in one objective to show the trade-off between these three objectives. We
do this to highlight the importance of a joint-decision making process where benefits must be shared to

satisfy all involved stakeholders.

The framework of MOTEEO for case study 1, a H-MG is presented in Figure 1. Different stakeholders
have business relationships (dashed link) with various participants of a smart grid (i.e. the EV owner,
EV-O, owns the EVs and pays the DSO, who is in charge of the distribution system for the use of the
grid, the policy maker P-M enforces environmental targets etc.). The components of the smart grid are
modelled and these models are integrated within MOTEEO. In particular, EVs communicate their
charging requirements, arrival and next departure times; these set the constraint of the optimisation.
Within MOTEEO, a range of services/objectives are modelled according the necessities of the involved
stakeholders. The decision variables that optimize the objectives are the EV charging scheduling. MOO
is applied to provide the full range of available solutions. The stakeholders then participate in MCDM
and the EV charging/discharging scheduling are decided.
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Figure 1 MOTEEO framework for single H-MG

The decentralised MOTEEO proposed in this paper is then applied to multiple EVs and dwellings in a
real-distribution network as depicted in Figure 2. The business relationship links have not been depicted
to simplify the image. Each EV applies MOTEEO, considering the objectives of the aforementioned
stakeholders and the overall benefits are quantified. This case study is useful for the stakeholders at a
higher level, i.e. DSO and policy maker, who can then quantify the prospective benefits at a higher scale
than the single H-MG. These benefits are the reduction in the overall grid-peak demand and total CO»
emissions. Finally, in case study 3, a utility function combining energy cost, battery degradation and
grid net exchange is defined and optimised. This approach highlights the trade-off between the
objectives and establishes the necessity of collaborative decision making. Stationary storage is also a
promising technology which is extensively exploited in smart grids (see [16]). However, the aim of the
current work is to highlight the opportunities brought by EVs. It is worth pointing out that the proposed
MOTEEO framework is a consensus-based approach where EV users authorise the use of their EV
batteries for energy services for a specific period and within certain energy levels; the algorithm ensures

that the energy required by the EV user for the next trip is made available at the next departure.
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Figure 2 MOTEEO framework for a distribution network

Assumptions for the mathematical model
For the purpose of this research, a number of assumptions have been made while defining the

mathematical mode. These apply to all the cases and scenarios.

— EVs have the same driving patterns as conventional internal combustion engine (ICE) vehicles.

— EV driving requirements are taken as constraints, and plug-in and plug-off times are approximated
to the nearest quarter of an hour.

— The real-time electricity price provided to the consumer follows the same behaviour of the
wholesale market price with distribution and transmission charges. This is not altered during EV
charging.

— EV batteries reach end of EV life when their state of health drops to 80%.

— Upon arrival at home, the SOC of the EV battery, departure time for the next trip and the required
energy (distance to drive) are known.

— The daily dwelling electricity demand and PV generation profiles are known. It is assumed that
prediction techniques can provide such information to the deterministic optimisation performed in
this study.

— The utility company or an aggregator is responsible for providing electricity supply to the final
customers, and also provides real-time pricing.

— An aggregator is responsible for the procurement of sufficient assets to meet the minimum
requirement of EVs for frequency regulation. It is assumed that the aggregator is the DSO, so the

revenue stream is directly passed from the DSO to the frequency regulation service providers.



— Under smart charging and bidirectional charging, EV chargers can regulate the output power
continuously.

— Houses are symmetrically distributed across the three phases of a 400 V feeder, therefore we
analyse one phase.

— All charging events follow a constant current profile. Although real-life charging profiles also
include constant-Voltage charging, this simplification does not diminish the quality of the
modelled results as during constant-Voltage charging less energy is exchanged compared to
constant-current charging.

— The impact of charging on battery degradation is equal to that of discharging.

— Calendar degradation does not influence the optimisation process and therefore is not quantified

as a direct impact of the charging/discharging scheduling.

The above assumptions are aligned with the current market structures and state of the art; in fact, short-
term forecasting techniques achieve reasonable accuracy [24], hence demand and local generation
profiles can be known day-ahead. There are examples of utility companies providing V2G services,
where the EV user specifies the departure time and the required level of charge [25]. Companies with a
portfolio of distributed energy providers are being developed with Nuvve being one of the major players
[26]; they aggregate EV fleets to provide energy services and remunerate the EV owners. A DSO in the
UK [27], is involved in major V2G projects with the aim of reducing grid reinforcement costs. This
highlights the interest of the system operators procuring V2G services by managing EV fleets. Calendar
degradation is caused by high ambient temperature and SOC [28], with the former being unaffected by
optimal charging scheduling. Moreover, the impact of SOC is quantified in the model developed in this

work.

3. Analytical formulation

The stakeholders introduced in Section 2 pursue their objectives which can be economic,
technical/operational and environmental. Figure 3 presents the flowchart for the proposed MOTEEO
framework. In the present work, three different case studies, representing different scales and operating
conditions are implemented. The four objectives, and one scenario introduced in Section 2, are
mathematically formulated from Sections 3.1 to 3.5. The EV energy constraints, travelling requirements
and limitations of the charging equipment are modelled in Section 3.6 and the augmented non-
dominated e-constraint method (ANEC) is applied along with the Analytical hierarchy process (AHP)
to quantify multiple optimal EV charging scheduling, in Sections 3.7 and 3.8 respectively.
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Figure 3 Flowchart of the proposed MOTEEO framework

3.1. Energy cost minimisation
From the point of view of the end electricity user, the operational cost represents a fundamental
objective that has to be minimised in order to receive a return from the assets. Investments in energy
efficiency and RES are made with the main aim of minimizing operational costs. For this study, a
function representing the energy cost of the H-MG, C°, is expressed by Equation 1.

argmin C° = Y, [(PE — PFV + PEV* — PFV7) At ] 1)

PEV+ PEV—

Where 7, is the price signal, P is the electricity demand at time t, Pf" is the PV generation at time t,

PEV+ PEV_

is the power charged to the EV at time t and is the power discharged from the EV at time
t. At takes into account the energy exchanged in the time-step and T'° is the total number of time steps
considered in the scheduling. Here the decision variables are PEV* and PEV~: by iteratively

manipulating their values, a minimum of the cost function for each time step can be reached.

3.2. Battery degradation minimisation
In this work, only cycling degradation is considered in the optimisation algorithm, as this is directly
related to smart and bidirectional charging. Battery degradation cost C% caused by a charging schedule

1s defined as:



argmin € = YN, c¢(PEV*, PEV) @)

EV+ pEV—
P77 Py

B
Where C¢ = ;_L is the battery degradation cost related to a charging/discharging event at time t, with
t

CE being the investment cost of the battery in £/kWh and E} the prospective lifetime energy throughput
under certain charging condition PEV*, PEV~. It should be pointed out that the future cost of EV
batteries is expected to decline and a range of values are forecasted. We have considered an average
battery cost that is compatible with the future trends (see [29], [30], [31] and [32]). Furthermore,
although new battery technologies are being developed for EV applications, the Global EV outlook
2018 of the International Energy Agency [1] expects that these will not reach commercialisation before
2030, and that lithium-ion batteries will represent the majority and continue to be used even after 2030.
From experiments performed on a range of Lithium-ion batteries, from cylindrical to automotive cells,
cycled at a certain temperature, at a different charging/discharging rate and depth of discharge (DOD),

EF can be defined, in accordance with [33], as:

Ef = 2 xnFOL EEV DOD 3
Where nEOL is the number of full cycles before the battery reaches the End of life (EOL), EEV is the
maximum energy of the EV battery, DOD is the depth of discharge adopted in the tests (90%), and a
cycle is defined as a charging-discharging sequence (hence the 2 is employed in equation 3). It is
observed from the empirical data [34] that capacity fading due to cycling degradation happens linearly
with respect to the energy exchanged with the EV battery at each time step. EOL is generally associated

OL

with a battery degradation of 20%, hence, nf% can be defined as in Equation 4.

nEOL — ‘;;f (4)
Where a€ is the cycling degradation coefficient, which is influenced by several stress factors. In this
paper, we model the battery degradation coefficient by considering three stress factors, namely battery
temperature, charging rate and average SOC, in accordance with previous works [28], [35]. We propose
an improved model based on [36] and adapted from cycling tests performed on commercial automotive
Li-ion cells. In fact, in our improved model we fit the cycling results of automotive batteries and include
the impact of average SOC, both not considered in [36]. In this study, we assume battery temperature
to be the same as the average daily ambient temperature and is treated as an external condition that
influences the optimisation but that cannot be handled to minimize its impact. Furthermore, the impact

of charging and discharging rates are considered to be equal.
Equation 5 expresses the proposed battery degradation model

ac(TB,PEV*, PEV™) = [By (TB)? + Bo(TB)? + B3 TB + By] X [Bs CR+ Bs] X [B,(SOC) + (5)
Bs]



where aC is the capacity degradation coefficient due to cycling degradation, T? is the battery

EV+ _
temperature, CR = % is the charging/discharging rate, EEV is the EV battery capacity, (SOC) is the

average SOC of the battery during battery utilisation and f3;_,g are fitting parameters. In equation 5, the
last multiplicative term considers the effect of EV charging at different average SOCs. In the simulated

period, SOC depends on the defined decision variables based on equation 6.

EV—
a P
2{5":1(77 PEV*'—tT) At
S0C%+

(S0C) = e ©

where SOC? is the SOC of the EV upon arrival, At is a time duration of a simulation step and N is the
total number of steps available from arrival until the next departure. By quantifying the battery
degradation cost caused by a certain charging intervention, this can be compared against the associated
benefit. Accordingly, the algorithm can choose the values of the decision variables, complying with the

imposed constraints, to minimize degradation.

3.3. Grid net exchange minimisation
Storage solutions can minimize the time mismatch between RES generation and electricity demand, by
charging in periods of RES excess and discharging in periods of high demand. In this way, the net
power exchange profile with the grid is flattened which allows an optimised generation dispatch and
stable grid operation. It is therefore in the DSOs’ interest to allow energy storage implementation, both
stationary and mobile (EV). The aim of the optimisation is to minimize the variation of the net power
exchange with the grid. The objective function representing the grid net exchange P¢ | can be depicted

as in Equation 7.

(7)
argmin P¢ = \/Zé\’il(ptd — PtPV + PtEV+ _ PtEV‘)Z

EV+ pEV-—
Py P

where P&, PPV, PEV* and PEV~ assume the same meaning as in Equation 1. This objective function is

calculated as the variation of the net power exchanged with the grid.

3.4. CO; emission minimisation
EVs are seen as a major solution to reduce global CO, emissions from the transportation sector.
However, the environmental benefits of EVs depend on the carbon intensity of the national/local energy
mix. This is because the energy mix that is used to charge the storage, and hence the CO, emitted for
energy provision, changes during the day, week and season. Therefore, there are periods of low specific
kgCO»/kWh (off-peak), as opposed to periods with high specific kgCO,/kWh (peak). In this paper, the

emissions avoided by ICE substitution are not considered.

Therefore, the objective function that aims to maximise environmental benefits can be defined in

equation 8:
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where ef"" is the time series of the specific CO, emission for each kWh absorbed from the grid. At
present, these mechanisms are not adopted in the electricity industry, but with the increasing concern

on greenhouse gas emissions, this method represents a suitable approach for the future.

3.5. Revenues from ancillary service provision
Ancillary services such as dynamic frequency regulation, require the regulation of the output of the
generation/demand asset according to the frequency deviation from the nominal value of 50Hz. This is
carried out with the droop control approach, which determines the regulation power provided in
correspondence of a certain frequency deviation. When providing this service, EVs will have to follow

the regulation signal defined Equation 9-11, subject to the same imposed constraints as for the other

objectives:
regt = —k®f iff<f<f ©)
regt = —PEV iff<sf (10)
regt = PEV f=f (11)
Where k¢ = f

DPEV
(; f) is the droop coefficient of the frequency controller, f is the electrical frequency, f

and f are the upper and lower frequency limits of the droop-controller. We assume the EV provides

Firm Frequency Regulation (FFR) over night from 11 p.m. to 7 a.m., which means in that period the
EV is not available for other services. It is implied that availability for FFR should be compatible with
the driving pattern of the EVs. According to [37], frequency regulation does not lead to net change in
battery charge. Therefore, we assume that the SOC of an EV at the end of the FFR provision window
is the same as the SOC at the beginning of that window. However, participation to FFR schemes implies
battery utilisation, which leads to degradation. On the other hand, this service provides a remuneration.
The interaction between this objective and the others will therefore be modelled based on the principles

outlined as follows:

— The UK National Grid procures FFR for 8 hours on a daily basis. Providers can decide to deliver
this service or not; to this end this decision is binary.
— The provision period is fixed and cannot be optimally distributed throughout the day according to
a mathematical computation.
As a result of the above assumptions, the connection between Objective 1, 2, 3 and this scenario is
brought to a binary decision variable (FFR € [0,1]y) which governs the FFR provision. Hence, we

analyse two scenarios, with and without ancillary service provision.



3.6. Constraints of the optimisation — EV model
The constraints for the various objectives presented so far that define the boundaries of the feasible
region are presented. These are defined based on technical restrictions, usage behaviour as well as
practical approach. The aim of the optimisation is to define power exchange profiles of EVs for different

objectives, subject to constraints. Equations 12 to 15 link the power exchange of an EV with the energy

stored.
EEV = EEVa ift=t? (12)
EEV = EEY, if AEV =0 (13)
EEV = EEV, — Etrip ift=t*+1 (14)
EV— : EV _
EFY = B+ (nPE* —2—) if At =1 (15)

In Equation 12, upon arrival of the EV, the energy stored in the battery is measured. In Equation 13, if
the EV is not available (AEY € [0,1]y is a Boolean variable indicating the availability of the EV), then
charging events cannot be initiated; hence, the energy state of the EV is unaltered (E£Y] is the energy
stored in the EV at the previous time step). Equation 14 takes into consideration the transportation
constraint; in fact, at the departure time, the energy required for the next trip is deducted from the
available capacity. If the EV is available, then in Equation 15 the energy stored is modified by adding
the energy charged and deducting the energy discharged by taking into consideration the efficiency of
the EV charger 1.

The physical constraints in terms of storage size and power ratings as well as EV travelling requirement

are presented from Equation 16 to 19.

0 < PEV*,PEV~ < PEV vt (16)
EEY < EEV < EEV vt (7
EEV > ptrivy gEV if t =taepn (18)
PEVt x PEV- =0 vt (19)

Equations 16 and 17 limit the power exchanged by the EV and the energy stored within the respective

bounds. Here, a minimum limit of EV capacity of EEV = 0.2 EEV has been set provide for unforeseen
journeys. Equation 18 ensures that the energy stored in the EV meets the need of the user for the next

trip. Finally, Equation 19 ensure that charging and discharging do not happen at the same time.

3.7. Multi-objective optimisation with ANEC
Some definitions are presented hereby to facilitate the formulation of the MOO problem [38].

Definition: Given a MOO problem expressed by Equation 20:
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where I' © R" is the feasible region, defined by the imposed constraints and fi, ..., fi is the set of

objectives

— a solution X' is said to Pareto dominate another solution x and is indicated as x < x" if

» i) <filx) Vi=1,..,k (21)
= fi(x) <fj(x) foratleastonej=1,..,k

— a solution X' is Pareto optimal/efficient/non-dominated if there is no other solution that

dominates it. The Pareto front is the set of all the Pareto optimal solutions.

— In other words, Pareto optimal solutions are those that cannot be improved along one objectives
without deteriorating the performance along another objective. The aim is to produce all the Pareto

optimal solutions in order to enable decision-making.

Among strategies aimed at obtaining the full Pareto front, the augmented e-constraint method is widely
implemented [39]-[43], for fast and reliable MOO. With this approach, one objective is optimised while
the others are converted into constraints. By varying the strictness of such constraints, a subset of the
Pareto front can be obtained. In this algorithm, Lexicographic ordering is applied to define the range of
the objective values, from their maxima to the minima. Under Lexicographic ordering, the objectives
are given priorities and are sequentially optimised; the values from the optimisations at higher priorities
are used as constraints for the optimisations at lower levels. We subsequently apply non-dominated

sorting to ensure that all the solutions are Pareto efficient. The following pseudo-code outlines (ANEC).

Table 2 Pseudo-code for ANEC

Algorithm 1 ANEC

1: Input: MOO problem with F™ set of m objectives, I' defined by p constraints and n™* divisions
of the solution space
2: Initialisation: Lexicographic ordering
3: fork < 1to(m)do
4 lex = lexminF™ (21)
x,fk
5: end for
6: Define Nadir point ¥,,,; = max({*®*) and optimal point ¥,,; = min({'e¥)
7:  Arbitrarily select objective f* to be optimised
8: forj«— 1to(m™** +1)do
9 for | — 1 to (m™** + 1) do

10: AQmx1 = L -] v
. p_
11’ £m><1 « !I" - q X nmaI)I:
12: o« argmin (f;(x)—y XS

x€lF\{fi}=¢&+S
13: if infeasible



14: Exit current for loop and continue the loop above
15: end if

16: end for

17:  end for

18: for o« 1 to (size(o)) do

19: for p — 1 to (size(o)) do

20: Check ¢, < ¢,

21: end for

22: end for

Where f* is the prioritised objective during Lexicographic ordering, q is the index vector for the nested
for loops, € is a vector representing the constraints for the objective functions that are not minimised.
There will be as many nested for loops as n/" =m — 1. § = [sy, ..., S;y_1] are the slack-variables
adopted for the augmented-& constraint and y is an arbitrary constant value . As the Pareto optimal
solutions are progressively calculated, the values of & vary from the maxima of the single objective
functions to the minima. ¢, and ¢,, are solutions of the g-constraint method. It should be noted that

Mmax s the number of divisions of the range of each objective values. As the & constraint for one

n
objective is varied within the for loop, the constraints of the other objectives are kept constant. In the
for loops at higher levels, the € constraints of the other objectives are varied. It is evident that a number
of computations will be infeasible; this is because as the objectives are conflicting and the objective
values are constrained from their maxima to the minima, two conflicting objectives cannot

simultaneously reach their minimum values. To avoid unnecessary computations, once an infeasible

computation is found, the current for loop is ended and the loop at the higher level is continued.

3.8. Multi-criteria-decision-making with analytical hierarchy process
Once the full Pareto front is obtained, a decision needs to be taken to choose the preferred solution. If
no preference is shown, the Pareto front represents the set of solutions that are equally optimal and
therefore equivalent. MCDM techniques can help on choosing one solution from the Pareto front. In

this study AHP [44] is employed.

AHP evaluates the performance of » alternative solutions along a set of m objectives. The decision
maker prioritizes the different objectives with a relative comparison matrix A,,x,,. The priority of each
objective is quantified with relations A;;. A;; = 1, Vi as an objective has the same priority as itself. The
relative comparison of two different objectives is outlined as follows: if i is more important than j, then:
{AU = k,
1
Where k € [1,9] determines the relative priority of i compared to j; A;; = 1 indicates that i and j have

the same importance while 4;; = 1 indicates that i is extremely important compared to j. Then, a vector

of weights B,,,, is built and ultimately, a final score is assigned to each solution based on their



performance along each objective. The solution having the highest score shall be chosen as the preferred
solution. It should be pointed out that, since in this paper we consider three decision makers, 3 weight
vectors will be individually considered, i.e. [B* B2 B3]. An example of common decision making
processes in a group of stakeholders with diverse and conflicting objectives can be found in [45] , where
a method to combine the priorities of the different groups of decision makers in one matrix is proposed.
However, in the present work, each group of decision makers is modelled separately, to highlight the
benefits/drawbacks of different prioritisations and, as will be discussed in Section 4.3, a profit sharing
approach to mitigate conflicts is proposed. A consistency check is also performed for each pairwise
decision matrix to ensure reliability of the decision making process; a detailed explanation is provided
in [44].The priorities of a group of stakeholders are modelled assuming that there is homogeneity in
each group, namely end-electricity-users, EV users and DSO. Certainly, there will be differences in the
priorities of each individual, which could be captured with a survey. However, in depth modelling of

detailed user preference need to cover a dedicated investigation, which is beyond the scope of the paper.

4. Results and discussion

The proposed MOTEEO framework is initially applied at a household level to demonstrate the
effectiveness of proposed method to model and maximize the interests of the five stakeholders.
Subsequently, the strategy is applied to a typical distribution network with realistic penetration level of
PV systems and EVs. Three EV charging strategies are adopted: uncontrolled, smart and bidirectional
charging. The three DM who are involved in the decision-making process are the end electricity user,
the EV owner and the DSO. Finally, an alternative utility function based MOTEEO is applied for a

single-household to show the importance of collaborative decisions where benefits are shared.

4.1. Case study setting
As introduced in Figure 1, a single-dwelling comprising of a 4kW PV installation and one 30kWh EV

is considered for case study 1 and case study 3 and the associated parameters are detailed in Table 3.

Table 3 Setting for the case study 1

Parameters

Electricity demand Detached single-house, single-phase
RES type Roof-top photovoltaic

RES system rating 4kW

c? 150 £/kWh

EV charger type Type 2 conventional/Smart/Bidirectional/ single-phase
PEV 3kW

n 90 (90) %

At 15min
Pricing strategy Real-time pricing

Optimisation strategy ~ Day-ahead

T8 18 C

t¢ 17:00



¢d 10:15
EEV 30kWh

The optimisation is performed one day-ahead, with a real-time price derived from the wholesale spot
price by adding network charges and taxes [46]. From the modelling implemented in Section 3.5, two
scenarios, with and without ancillary service provision, are simulated. Figure 4 depicts the evolution of
the real-time price, and EV availability for case study loptimisation. It can be demonstrated that when
PV generation is available, minimising grid net exchange corresponds to minimising CO, emissions. A
practical demonstration is provided in the appendix. Consequently, we minimize Objective 1 — Energy
cost, Objective 2 — EV battery degradation and Objective 3 — Grid net exchange. The mathematical

optimisation process for case study 1 is hereby detailed.
A) lex = lexmjirg F™ k=1,2,3and m=3, where f* has the highest priority.
X,

B) We define:
¥, = max({}®*) Nadir point and ¥; = min(¢}¢*) fori = 1, 2, 3. Where {}** are the results for
objective i from the Lexicographic ordering.

C) foro=1,..,n™* +1and p =1,..,n"** + 1 We minimise:

D) argmin € = YN [(PE — PPV + PEV* — PEV-) At my] — v (52 + 53)
PEVY PEV=, 5,553
E) Subject to (12) to (19) and
F) Cl=¢,+s,
G) PG = g5+ s3
Where
H) & =0X 327;;1;2 ,E3 =P X Zi;;ff with n™%* = 6, s, and s5 are slack variables and y is
an arbitrary constant
I) If FFR is provided, AEY = 0 from 23 to 7.

J)  end for

For case study 2, we apply the setting for case study 1 to all the EVs involved, in compliance with the

associated electricity demand profiles, PV generation and EV transportation requirements.

For case study 3, we adopt the same setting outlined in Table 3 but with the implementation of a utility

function; the mathematical process is as follows:

A)  argmin 1, C® + 1, C* + A5 PC

Pt-EV+,Pt-EV_
B) Subject to (12) to (19)
Where 4; = 1, 1, = CB = 150 and A5 depends on the grid utilisation fee set by the DSO



All the simulations have been carried out on a computer with an Intel Core 17-6500U CPU 2.5GHz
processor and 16GB RAM Time resolution for the optimisation in all case studies is 15 min. Sequential

quadratic programming algorithm in Matlab2017a has been employed for the non-linear optimizations.
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Figure 4 EV availability and real-time price

As depicted in Figure 2, a typical UK distribution network (DN) [47], comprising a 400 V feeder which
provides electricity to 57 houses is considered for case study 2. One phase of the 400 V feeder is
simulated assuming balanced three-phase load distribution therefore, 19 houses are individually
simulated. To quantify the unbalance in a three-phase distribution system, the three phases should be
individually simulated and the conclusions, which are rather network and location dependent, should
be evaluated on a case-by-case basis [48]. Eight days from four seasons, considering both week-days
and week-ends, have been investigated. Different PV generation profiles, depicting the seasonal
variations, and different EV availability patterns have been considered [49]. All the electricity demand
profiles have been generated from the Centre for Renewable Energy Systems Technology (CREST)
model [50]. The configuration of the typical DN is based on the PV and EV penetrations levels predicted
for 2040 [51]. The year 2040 represents a crucial landmark because of the ban of ICE vehicles
announced by the UK government [52]. By considering the current penetration of domestic PV systems
[53], [54] and using the prediction of the UK National Grid Future energy scenario [51], a penetration
rate of 50% is projected. This implies that in one phase of the LV feeder, 10 houses will be equipped
with a PV system. Since the UK average PV system size is 3.35 kW, a normal distribution around a
mean value of 3 kW is assumed. The PV generation profile is referred to a typical winter day (hence
the ambient temperature) of the Midlands in the UK. An EV penetration rate of 50% is expected for
2040 [51], among those that have access to at least one car [55] hence, 10 EVs are simulated. Table 4
lists the parameters adopted to produce the EV transportation model and other key assumptions for case

study 2.



Table 4 Parameters of the case study 2

Parameter Value

EV and PV penetration rate  50% [51], [53], [54]

Average daily mileage 9 miles [55], [56]

Average  daily energy 1.74 kWh [55], [56]

consumption

Arrival and departure times for trips randomly selected from National Time use Survey data
Average PV size 3.35 kWp [53]

EEV) PEV 30 kWh/3 kW

EV charger type Type 2 conventional/Smart/Bidirectional/ single-phase

Frequency regulation prices  From UK National Grid post-tender reports
4.2. Results of case study 1 for single H-MG

To demonstrate the effectiveness of MOTEEOQO, highlighting the conflict of the different objectives

defined in section 3, we apply the proposed methodology to a single dwelling with one EV.

Single objective optimisation algorithm

Figure 5 shows EV charging scheduling for Objectives 1, 2 and 3 without FFR provision.
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Figure 5 EV scheduling for single-objective optimisations without FFR

With reference to the cost signal in Figure 4, it can be seen that under Objective 1 the EV is charged at
the minimum price available. Further price arbitrage is not carried out since having a round-trip
efficiency of 81% the price difference is not sufficiently profitable. Furthermore, the transportation
constraints are satisfied as the EV is charged before the next departure. When the EV is charged to
minimize battery degradation under Objective 2, the charging happens only close to the next departure
to minimize average SOC. In addition, the charging rate is gradually increased to minimize degradation.
This is because from equation 5, the combination of high charging rate and high average SOC causes

high degradation; charging the battery at a lower constant charging rate would have increased charging



duration leading to a higher average SOC and therefore degradation. At the same time, the full charging
rate (3 kW) is not employed as it would increase degradation; an optimum solution which underlines a
balance between the charging rate and the average SOC (their product is considered in equation 5) is
found. Under Objective 3, the EV is used to minimize the grid net exchange. As during the PV excess
hours the EV is mostly absent, PV energy autonomy is not fully maximised. However, upon arrival, the
EV exploits as much PV energy as possible and the peaks of electricity demands are also provided by
discharging the EV. Here, the conflict between the different objectives are unveiled. In fact, the EV is
charged with radically different scheduling under the three objectives and the scheduling according to

one objective inevitably worsen the performance along the others.

Figure 6 depicts EV charging scheduling for Objectives 1, 2 and 3 with FFR provision. It should be
noted that the EV does not initiate any charging event from 11 p.m. to 7 a.m., in accordance with the

FFR commitment.
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Figure 6 EV scheduling for single-objective optimisation with FFR

As shown in Figure 6, under Objective 1, the EV charging happens right before the FFR window starts
(between 10-11 pm, which provides the lowest price in the available window). As for Objective 2, the
charging is concentrated in the 7-10 period at a higher charging rate than Scenario i), which leads to
higher degradation. Under all objectives, the EV is charged before the FFR window, which keeps the
EV at a higher SOC, leading to a higher battery degradation compared to scenario i). In addition, the
performance under Objective 3 is worse as there is less availability of the EV to service/meet the
electricity demand. Table 5 presents the results of the three single optimizations with and without FFR
provision. Throughout this paper, costs have been designated with negative sign while revenues have

been attributed a positive sign.



Table 5 Results of the single-objective optimisations for one day

Scenario i) (without FFR provision)

Energy  Battery Grid net Emissions

cost(£) degradation (£)  exchange (kWh) (kgCO»)
min Obj; 0.1617 -0.0127 11.3 1.6394
min Obj, 0.1366 -0.0118 9.9647 1.4559
min Obj; 0.1353 -0.0170 9.8243 1.4197

Scenario ii) (with FFR provision)

Energy  Battery Grid net Emissions

cost (£) degradation (£) exchange (kWh) (kgCO»)
min Obj,; 0.7947 -0.1031 11.3 1.6891
min Obj, 0.7695 -0.1020 10.4762 1.5469
min Obj; 0.7742 -0.1034 10.2768 1.5521

When FFR is provided, the energy cost is further reduced by the FFR profits (£0.637) and battery
degradation increased (£0.0902), resulting in an overall profitable service. As for the fourth objective,
the limitation of the available optimisation window due to FFR provision increases the CO, emissions
slightly. Once the conflict between the objectives have been highlighted, MOO and MCDM techniques

are applied to find the optimal solutions for all the three objectives.

MOTEEO optimisation algorithm
Figure 7 and Figure 8§ depict the Pareto fronts obtained from the ANEC method for scenarios i) and ii).
The performance along the three objectives have been normalised to their maximum values expressed

max was set to 6, which leads to a maximum of 49 Pareto

in Table 5 to allow comparative analysis. n
efficient solutions. However, as discussed in Section 3.7, due to the conflict among objectives, a number
of computations were infeasible, and this led to 42 and 35 Pareto efficient solutions for scenarios i) and
i1), respectively. Some of the solutions cumulate in certain points; this could be avoided by dividing the
solutions space with higher resolution; however, this would increase the computational cost [defined as

0((n™%* + 1)?]. In this study, a rightful combination of both enough granularity of the Pareto front to

informatively take decisions and computational cost has been achieved.
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Figure 8 Pareto front with ANEC method and FFR

It can be observed in Figure § that in one area of the solutions space, minimising grid net exchange also
leads to battery degradation minimisation. This is because when FFR is provided, in order to minimise
energy cost, the algorithm schedules EV charging at 3 kW during the minimum price period available
(see Figure 6), which increases both battery degradation and grid net exchange (see Table 5). When
battery degradation is forced to be reduced by the g-constraint, the charging scheduling tends to the
behaviour of EV Ob. 2 (green stems) which is closer to the behaviour of EV Ob. 3 (blue stems), therefore

reducing grid net exchange. However, when grid net exchange is forced to be reduced towards its



minimum value, battery degradation is increased. AHP is applied to choose the optimal solutions among
the Pareto members provided by the MOO, according to the different prioritisation of the stakeholders.
Three stakeholders/decision makers (DM) holding different priorities are considered. The relative

comparison matrices (following from Section 3.8) for the three DMs is shown in Table 6.

Table 6 Relative comparison matrix for different DMs

DM, DM, DM,

Ob, O0b, Ob, Ob, Ob, Obs Ob, Ob, Obs

0ob, 1 5 9 op, 1 1 2 op, 1 1 1

5 2 9

ob, 1! 1 2 Ob, 5 1 9 Ob, 2 1 1

5 5

ob; L1 1 1 Ob; 1 1 1 Ob; 9 5 1
9 2 2 9

DM, is the end-electricity user who wants to minimize the energy cost. DM, Is the EV owner who
wants optimize the exploitation of the EV battery and DM; is represented by the DSO or the policy
maker who wants to optimize grid utilisation and minimize CO- emissions. The consistency ratios found
for the three pairwise decision matrices, related to the three DMs, are lower than 0.1 which verifies the
consistency of the decisions It should be pointed out that multi-objective optimisation applied to EV
charging scheduling has only recently gained interest in the research community. Hence, there is a lack
of studies addressing the prioritisation adopted by the different stakeholders, especially the EV user, for
the different objectives. Thus, the priorities in the three relative comparison matrices have been set
based on suitable prioritisation rules and could be verified by surveying a heterogeneous sample of

potential stakeholders.

The results from the decision making process are shown in Table 7. It can be seen that MOO with
MCDM finds the overall best option while still favouring the DM’s choice. This is because once the
full Pareto set is available, there is more freedom on choosing the option that achieve the best

performance along the objectives while complying with the inherent prioritisation of the stakeholder.

Table 7 Results of the MOTEEO method with the application of AHP for one day

Scenario i) (without FFR provision)

Energy  Battery Grid net Emissions

cost (£) degradation (£)  exchange (kWh) (kgCO,)
DM, 0.16 -0.0127 11.3 1.64
DM, 0.15 -0.0120 9.95 1.42
DM; 0.15 -0.0120 9.95 1.42

Scenario ii) (with FFR provision)

Energy  Battery Grid net Emissions

cost (£) degradation (£)  exchange (kWh) (kgCO»)
DM, 0.794 -0.1022 10.54 1.49

DM, 0.769 -0.1020 10.48 1.55




DM; 0.789 -0.1023 9.95 1.42

From the results, it can be seen that the stakeholders would choose the solution that naturally fits with
their priorities, sacrificing the performance along other objectives. Comparing Table 7 with Table 5,
some differences are visible. Under scenario i), DM, and DM3; agree on the same solution. When
providing FFR, DM3 chose a solution that caused lower battery degradation and higher return for the
end-user than with the single-objective optimisation. These differences compared to the single objective
optimisation are due to fact that with MOTEEO the full Pareto front is considered when making the
decision. In accordance with the weights presented in Table 6, the adopted solutions lead to higher
overall benefits than the single-objective optimisations. Consistent with the previous results, cost
minimisation with FFR provision is particularly adverse for the battery as the combination of Vehicle-
to-home (V2H) and V2G leads to a higher utilisation. As previously mentioned a lower energy cost
leads inevitably to a higher grid impact and vice versa, because the price signal is not dynamically
updated by to grid operator to better reflect the grid status. In addition, under the optimal grid net
exchange, CO, emissions are minimum. This effect will be particularly noticeable when the proposed

methodology is applied to a real-life distribution system.

4.3. Results of case study 2 for a distribution network

MOTEEO optimisation algorithm

The application of MOTEEO for a typical UK DN allows the quantification of grid peak power and
overall CO, emissions at a higher scale compared to the single dwelling. Eight days have been simulated
over the four seasons, including weekday and weekend. Four charging strategies, including
uncontrolled charging (a), smart charging (b), bidirectional at home (c) and work (d) are simulated with
two scenarios related to the ancillary service provision. Under uncontrolled charging, upon arrival the
EVs are fully charged at the maximum power. Under smart charging, the charging process is controlled
but the EVs are not discharged; hence under this strategy FFR cannot be provided. Bidirectional
charging allow EVs to discharge towards the H-MG or the grid. Figure 9 and Figure 10 depict the
MOTEEO scheduling for scenario 2¢) in the eight days. The preferred solution for the three decision
makers, end-energy user, EV owners and DSO are shown. Other scenarios are not illustrated here for

the purpose of conciseness.
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Figure 10 MOTEEO scheduling for scenario 2c) summer (weekday and weekend) and autumn (weekday and weekend) from
top to bottom

As can be seen in Figure 9 and Figure 10, diverse PV generation and EV availability, have been
simulated, due to seasonal effect and due to different travelling patterns on weekdays and weekends,
respectively. As a general trend, EVs had higher availability for MOTEEO in the weekends. Higher
availability and PV generation particularly benefitted grid net exchange minimisation under DM3, as
can be seen in spring and summer weekends. Under DM», to minimise battery degradation, the EVs are
charged as close as possible to the respective departure times, while under DM, price arbitrage is carried

out.

Table 8 presents the results for case study 2. For all the scenarios, the MOTEEO framework calculated
the Pareto fronts and the DMs chose the preferred solution based on the MCDM criteria outlined in
section 3.8. As illustrating all the Pareto fronts generated in case study 2 would lengthen the paper we

present the Pareto fronts for one day (summer weekend) in the appendix.



Table 8 Results of the MOTEEO method for eight days

Case DM Energy Battery Grid net Emissions
cost (£) degradation (£) exchange (kWh) (kgCO»)
2ai) -105.74 -28.55 1917 489.88
DM, -66.15 -9.97 178 334.48
2bi) DM, -72.08 -9.42 176.74 333.96
DM; -72.5 -10.2 170.53 322.30
DM; -52.79 -50.01 299 481.91
2ci) DM, -71.40 -9.52 176.72 333.69
DM; -72.80 -20.39 174.07 322.65
DM, -52.73 -51.06 291.19 486.77
2di) DM, -71.26 -9.48 176.72 333.82
DM; -72.57 -10.26 173.90 322.87
DM, -12.38 -26.74 276.1 392.50
2eii) DM, -20.83 -13.59 176.32 342.03
DM; -22.18 -17.5 171.26 334

Under uncontrolled charging, the EVs are charged at maximum power until 80% of SOC is reached.
This produces the highest values for all the metrics in Table 8, indicating that it is the worst scenario
under all the criteria. The three rows for each case shows the results of the solution chosen by the three
DMs, namely, end-electricity user, EV owners and DSO (DM;, DM, and DM, respectively). With smart
charging the battery degradation is kept to a minimum and there is little difference between the three
DMs along this dimension. When bidirectional charging is employed, the improvements are higher;
especially the energy cost can be further minimised as price arbitrage is performed. It should be pointed
out that the performance along grid utilisation depends on the availability of PV generation (in colder
months the performance is worse than the warmer months) and EV availability pattern; the EVs may
not be available or at high SOC, therefore it would be unable to charge from PV. The different interests
of the stakeholders are again evident: in 2c¢ 1), under the solution preferred by the DSO (DM3), the total
utilisation is reduced from 291.19 kWh to 173.9 kWh (-40.28%) when compared with the solution
chosen by the end-electricity. Conversely, this solution increases battery degradation compared to the
solution chosen by the EV owners (increases degradation by 7.6%). CO; emissions are always at their
minimum under the scheduling preferred by D M3 as it utilises more local PV generation. Depending on
the electricity demand profile of the dwellings and EV travelling pattern, this may not necessarily lead
to the best solution along the other directions; this is because the EVs may be travelling when the peak
demand occurs. When FFR is provided, it leads to an increase of all the metrics a part from the cost,
because the optimisation window is reduced. However, FFR proves to be an overall profitable service
as profits (£54.53) are higher than the incurred battery degradation cost (£3.53). Although an early
replacement of the EV batteries may cause distress for the EV owners, this is taken into account by the
battery degradation cost, which is offset by the prospective profits by a large margin (more than four

times). As discussed in section 3.2, the cost of lithium-ion batteries is expected to drop in future,



providing a better economic case. The forecasts predict a range of scenarios, where the average trend
shows a cost reduction of 33% compared to current values. Despite the uncertainty in the future battery
cost, any cost reduction will proportionally reduce the cost of battery degradation (battery purchase cost
is included in the model). The positive consequence is that the use of EV batteries for energy services
will become more cost-effective, which will improve the profitability of V2X services for all the
stakeholders. A clear trade-off between the objectives is seen; the involved stakeholders must
collaboratively take decisions and share benefits. It implies that all stakeholders must be sufficiently
informed and capable of making informed decisions. Furthermore, a societal discussion will be required
to see who can reap most of the benefits, and who must shoulder the burdens. To this end, the DSO is
particularly suitable to manage this as a considerable improvement in grid utilisation is achieved which
will defer grid investments. Therefore, it is in the DSO’s interest to share the profit with the electricity
users (in the form of reduced electricity bills), who lose 27.34% under the case chosen by DM3, and EV
owners (subsidising part of their batteries), who lose 7.6%, to stimulate participation to the MOTEEO
program. If the profit is not shared, then end users and EV owners will not participate in delivering
energy services and no peak reduction will be achieved; in the worst case, uncontrolled charging will

cause negative impacts with increased EV penetration, and hence costs to the DSO.

4.4. Results of case study 3 for cross-case comparison
Smart incentives and intelligent tariff structures are critical for an effective implementation of
MOTEEO. Among the possible solutions, the implementation of peak demand charges from the DSO,
subsidy for the EV batteries and dynamic pricing are noteworthy. As an example of a smart tariff
scheme, the case of commercial users in Flanders, Belgium is presented. Commercial users can
purchase energy from the wholesale market but are charged transmission and distribution tariffs based
on the peak demand [58]-[59]. We adapted this tariff to Case 1 scenario i) (without FFR) to highlight
the importance of intelligent tariff schemes by applying the utility function [60] to combine the
objectives with the value/cost they bring. The energy cost, the battery degradation cost and the peak

demand charge have been combined in one function. Table 9 presents the result of Case 3.

Table 9 Results of the MOTEEO method with a utility function for one day

Energy cost (£) Battery Grid net exchange Emissions
degradation (£) (kWh) (kgCO»)
Case 3 0.14 -0.0121 10.26 1.55

By comparing Table 9 with the results of the single optimization in Table 5, a general improvement
along all the dimensions can be seen. In fact, under this case, the peak demands are targeted, leading to
a better performance along Obj; and Obj, but with a 28.1% reduction in battery degradation (£0.0121
instead of £0.0170) when compared to the single-objective optimization of Obj;. Therefore, the

effectiveness of the utility function, which requires the cooperation of the three main stakeholders, has



been demonstrated. Unfortunately, it is not always possible to assign a utility weight to all the
objectives. Especially for Obj;, the peak demand penalty should be decided by the DSO in relation to
the incurred investments for grid reinforcement, which should be calculated on a case-by-case basis (as
these are both network and location specific). In countries/regions where these types of tariffs are not

available, a joint decision between the involved stakeholders is critical to satisfy all the criteria.

5. Conclusions

In the present work, the MOTEEOQ approach is proposed and applied in three case studies and for
different charging strategies in order to find the synergy of four objectives: energy cost, EV battery
degradation, grid net exchange and CO, emissions along with ancillary services. Mathematical models
of the objectives and scenarios are constructed to represent the interests of the associated stakeholders.
The conflicting objectives of stakeholders are resolved by multi-objective optimization with multi-
criteria-decision-making technique. By implementing the proposed methodology to the three case
studies considered in this work some noteworthy conclusions were drawn and are summarised as
follows.

Smart charging restricts battery degradation; however, it does not provide satisfactory cost
improvement, grid and environmental impact minimization. The benefits of bidirectional charging are
considerably higher (there is a revenue instead of a cost in terms of energy expense and 11% reduction
in demand peak) compared to smart charging if EVs should be available during the day as well.
Therefore, it is important that bidirectional chargers (and PV generation) are available at different
locations, including work places. In addition, since battery degradation limits the performance along
the other objectives, batteries should be operated under optimal conditions as much as possible (low
temperature, SOC and charging rates). This could reduce battery degradation by 66.6% when compared
to uncontrolled charging. Confirming previous work in literature, uncontrolled EV charging is the worst
approach under all perspectives.

Under MOTEEQ, the end-electricity users can increase their benefits by 81% (compare 2e with 2b) by
providing frequency regulations service and the DSO can improve the grid utilisation by nearly 42%.
However, these are the maximum achievable benefits along one objective only, and there needs to be
cooperation between the stakeholders to increase the overall social benefits. This suggests that a larger
(or new) regulatory role must be played to ensure that overall social benefits are obtained. The DSO
must share the benefits achieved from improved grid utilisation (investment cost deferral) by ensuring
a revenue to the end-electricity user and the EV owner. The quantification of such revenue is case-
dependent and each distribution network should be studied individually. Therefore, a collaborative
decision process has been proposed. The implementation of a smart utility function under MOTEEO
targets the peak demand by combining the objectives of the end-electricity user and the DSO achieving
optimal grid operation while minimizing the damage to the battery (28.1% of reduction in battery

degradation compared to the case without MOTEEQ). This paper has demonstrated that a holistic



decision-making process under MOTEEO is required, as not doing so will inevitably result in sub-
optimal consequences for other stakeholders and in the longer term, affect the social licence of that
stakeholder and/or technology. Moreover, the MOTEEO framework allows costs and benefits to be
quantified and discussed by the various stakeholders. The application of this framework in future energy
systems will engage multiple stakeholders, increasing the utilisation of renewable energy sources and
integrating the energy and transportation system. The cooperation among stakeholders through a
decision-making process, as the one proposed in this paper, will bring overall societal benefits in future
smart grids. The strategies proposed in this work optimise the utilisation of distributed energy resources,

such as renewables and EVs, thus improving sustainability of the future energy landscape.
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Appendix

If a PV installation is available, then assuming that the energy generation from the PV system cause
zero-emission (life cycle CO» emissions are out of scope for this paper) it follows that by minimizing
grid net exchange CO, emission is also minimised. If the PV installation is not available, then emissions
are minimised if the EV discharges in periods with high specific CO»/kWh. In the present work, we
assume that a PV system is available. Figure 11 shows the result of the ANEC method minimizing both
CO; emission and grid net exchange. Given the negligible variation of the two objective functions
among the 11 Pareto optimal solutions, we consider grid net exchange and CO» emission minimisation

to be equivalent.
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Figure 11 Bi-objective optimisation of CO: emissions and grid net exchange



Figure 12 shows the normalised Pareto fronts (with respect to the maximum values of the objectives)
for 10 EVs under scenario 2¢) bidirectional charging for a summer weekend. The conflict among the

different objectives is noticeable as minimising one objective reduces the performance along other

objectives.
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