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ABSTRACT

This paper addresses the procedural generation of lev-
els for collaborative puzzle-platform games. To address
this issue, we distinguish types of multiplayer interac-
tion, focusing on two-player collaboration, and identify
relevant game mechanics for a puzzle-platform game,
addressing player movement, interaction with moving
game objects, and physical interaction involving both
players. These are further formalized as game design
patterns. To test the feasibility of the approach, a level
generator has been implemented based on a rule-based
approach, using the existing tool called Ludoscope and
a prototype game developed in the Unity game engine.
The level generation procedure results in over 3.7 million
possible playable level variations that can be generated
automatically. Each of these levels encourages or even
requires both players to engage in collaborative game-

play.
1. INTRODUCTION

Procedural content generation (PCG) is the algorith-
mic creation of content for games, such as assets, levels,
worlds, and even whole games. PCG has been part of
published computer games since the eighties. Prominent
examples include Rogue, Diablo, and Minecraft, among
others. Recently, PCG is receiving increasingly more
academic attention (Togelius et al. 2011, Hendrikx et al.
2013, Shaker et al. 2014). PCG has been used for various
reasons, including working around memory constraints
in past decades when hardware was less powerful, in-
creasing replayability by generating variation, making
the game development process more efficient, exploring
- and perhaps enlarging - the game design space, and
formalizing the rules of game design.

Research on the application of PCG for platform games
has focused on creating levels for the game Super Mario
Bros (Shaker et al. 2011), with its typical obstacles, en-
emies, and straight levels. However, little work has been

done on generating platformer levels for multiple play-
ers.

In this paper, we explore the potential of PCG to gen-
erate levels for puzzle-platform games that involve two-
player interaction, in particular, collaboration. We will
define game design patterns, which we will then trans-
late to level segments which create gameplay situations
featuring certain game mechanics. Similar to Dahlskog
and Togelius (2013), we will let a generator combine
these level segments to create a level. However, we will
use generative grammars to generate the levels instead
of evolutionary algorithms.

In section 2, we consider related work on procedural
level generation. Section 3 identifies game mechanics
that specifically address collaboration, and section 4 de-
scribes relevant game design patterns for these. Sec-
tion 5 gives an overview of the implementation of the
whole generation process. Section 6 offers a number of
points for discussion and section 7 presents our conclu-
sions and ideas for future work.

2. RELATED WORK

Although many approaches to procedural level gen-
eration are tied to specific games, p.e. (Shaker et al.
2011, Smith et al. 2011, Shaker et al. 2013, Ferreira
and Toledo 2014), there are some tools available that
are more general in their approach. For example,
LudoScope (Dormans 2011; 2012, Dormans and Leijnen
2013), is a tool that allows the transformation of
design concepts about missions and space to concrete
game levels for playable games, automatically, or semi-
automatically in interaction with a human designer
(Karavolos et al. 2015). It is based on the principles of
model driven engineering and generative grammars. In
order to generate levels for a specific game, the designer
makes a model of the generation process, breaking
it down into steps (modules) that can be executed
separately. We will use this tool to generate the levels
for our puzzle-platformer prototype.

There are several ways to characterize multiplayer
games. Zagal et al. (2006) distinguish three different
types of multiplayer games, based on the interaction
between players: competition, cooperation and collabo-



ration. Competitive games require a player to confront
other players in the game. In such games, players have
opposing goals. In cooperative games, opportunities ex-
ist for players to work together, from which both players
could benefit. However, “a cooperative game does not
always guarantee that cooperating players will benefit
equally or even benefit at all” (Zagal et al. 2006; p. 2).
Collaborative games differ from cooperative games in
that the players have the same goal, and share the re-
wards or penalties of their decisions, whereas in coopera-
tive games players may have different goals, and achieve
these goals independently from each other. So,“the chal-
lenge for players in a collaborative game is working to-
gether to maximize the team’s utility” (Zagal et al. 2006;
p.- 3), while in cooperative games players only have to
consider their own utility. Considering non-competitive
multiplayer games, generating levels for collaboration is
the more challenging type, because the forced mutual
benefits of the cooperation puts an extra constraint on
the design space.

The generation process is based on the idea of generat-
ing a path within a space and subsequently filling this
with rooms containing more concrete gameplay sections.
This method partially draws inspiration from methods
used for level generation in the game Spelunky (Kazemi
n.d.), and Karavolos et al. (2015). Design choices like
using numbers to define certain types of rooms is some-
thing that we have applied to our project as well. How-
ever, while Spelunky does not pay much attention to
the layout of the individual rooms (entrances and exits
being the only important element), we want our level
generator to generate levels with a set path in mind
that we want the players to follow.

3. GAME MECHANICS FOR COLLABORA-
TIVE PLATFORMERS

A platform game requires the players to be able to jump,
so they can traverse platforms. To create a puzzle-
platformer, this requirement must be paired with a cer-
tain mechanic that creates interactive puzzles that the
players can solve. For basic gameplay, the players must
be able to run, jump and interact with objects in the
game space in different ways, p.e. activating a lever to
move platforms or being able to pick up a player or ob-
ject to change the required jump height or width. Other
typical means to challenge the player’s skills and add
variation to the gameplay are the addition of enemies
and dangerous obstacles.

The prototype in this paper incorporates additional
objects that affect player movement, i.e. trampolines,
moving platforms and grabbable elevators.  These
objects affect the pacing of the game, and serve to
make the platforming aspect of the gameplay more
interesting for the players. The prototype also contains
a typical implementation of puzzle mechanics, players
will be required to work together to solve lock-and-

key puzzles. However, the lock-and-key mechanism is
implemented as a gate that is opened by pressing a lever.

Most of these game elements require only one player to
achieve their effect on the gameplay. The collaborative
mechanics involve the lock-and-key mechanism and
using each other’s head as a platform to reach a higher
place within the level, and will be described by the
patterns in the next section.

4. GAME DESIGN PATTERNS

There have been several attemps to formalize game de-
sign ideas into patterns. Some of these patterns focus on
gameplay sections of a level (Reuter et al. 2014, Hullett
and Whitehead 2010), others focus on game mechanics
(Rocha et al. 2008, Seif El-Nasr et al. 2010). Dahlskog
and Togelius (2012) even extract patterns in the form
of level segments from hand crafted game levels in order
to generate levels with the same style.

The design patterns in this study are defined manually,
and inspired by the templates of Reuter et al. (2014)
and Hullett and Whitehead (2010). However, they are
related to the other patterns as well. For example, the
upsy-daisy and the timed lever/gate pattern are a type
of ‘Shared Puzzles’ as defined by Seif El-Nasr et al.
(2010).

Defining game design patterns and their instantions as
level segments allows us to view the level as a sequence of
patterns, or combinations of patterns. Then, the gen-
erator can combine these patterns in order to design
gameplay situations. Because of space constraints, we
will only describe the collaborative patterns we found.
For each pattern we give a description of what the pat-
tern entails, as well as possible affordances for the pat-
tern and the resulting consequences for the player ex-
perience. Listed below are a three of these game design
patterns:

e The Upsy-Daisy
Description: An obstacle that requires two players
to time their jumps together to get onto a platform.
After this, the player can push an object down
to the other player so they can both get up and
proceed further through the level (See figure 1).
Affordances:
- Obstacles near the platform that needs to be
reached.
- Distance of platform above the ground.
Consequences: Causes a sharp increase in challenge
and coordination for the players. Both players
must time their jumps together so that one of the
players can use the other players head to get high
enough to reach the platform.



Figure 1: An example of the upsy-daisy pattern.

Figure 2: An example of the timed lever-and-gate
pattern.

e Timed Lever-and-Gate
Description: A lever that, when pulled, opens the
related gate and starts a timer. When the timer
runs out, the lever is reset and the gate closes (As
seen in figure 2).
Affordances:
- Amount of time before lever resets
- Number of obstacles between the lever and the
gate
Consequences: An increase in challenge and coor-
dination because of the fact that the players must
communicate about which player will go through
the gate and which is going to pull the lever.

¢ Common Enemy
Description: An enemy that cannot be destroyed
if the player confronts it alone, since the sides that
are facing the player are invulnerable (See figure 3).
Affordances:
- Number of enemies placed
- Amount of health of the enemy
- Damage done when hit by the enemy
- Speed of the enemy.
Consequences: Confronting a common enemy offers

Figure 3: An example of the common enemy.

a greater challenge than a regular enemy, as it re-
quires more skill to draw the enemy to one player,
while the other player hits its blind spot. This also
results in a greater sense of competence when the
players manage to defeat the enemy. Furthermore,
this pattern demands coordination between the two
players, since they will need to communicate which
player lures the enemy and which one attacks it.

5. THE LEVEL GENERATION PROCESS

The level generation process is based on a sequence of
generative grammars. Each grammar receives input,
performs its transformations and sends the output to
the next grammar, until the level is finished. The first
input is a 6x3 grid of tiles, which are all of the type
undefined, except for the leftmost column, which are of
the type ’start’. These tiles define the possible positions
of the level segment with the initial spawn location of
the player. The first grammar transforms two of the
three tiles into an undefined tile and transforms one of
the tiles adjacent to the remaining tile into an ’end’ tile.
The next steps of the process, which will be described in
more detail in the following subsections, are as follows:

e Path Generation

e Define Level Segments

e Apply Design Patterns

e Final Adjustments
Path generation
We generate a path from left to right in two passes. First
from left to right, then from right to left. We split this
process into two steps, because grammars are context-
free systems. By marking the orientation of each new

tile that is generated we add context to a context-free
system and can guarantee a connecting path.



Figure 4: During the first pass, the generator creates
a path from the left column to the right column. This
path is marked, so the grammar will not attach level
segments to these segments during the second pass. The
abbreviation of each tiles signifies the orientation that
the tile will have. 1H stands for a horizontal segment
and 1V a vertical one. A tile such as LCD stands for
Left-Corner-Down, meaning the player would enter the
segment from the left side of the tile and move through a
corner, exiting on the right. UCR stands for Up-Corner-
Right, DCR for Down-Corner-Right, et cetera.

Figure 5: During the second pass, a path to the left
is generated. In contrast to the first pass, the length
varies due to stochastic rules. The marks of the high-
lighted level segment indicates that the player moves
from right to left in this segment, and that it is the final
level segment before the end tile.

Define Level Segments

After the generation of the path is completed, each tile
is expanded into a 20x20 tile “segment”. These seg-
ments depict the first step in visualizing what the final
level will look like. Each level segment has several tem-
plates, which are chosen on the basis of what the seg-
ment had been marked as in the previous step. While
generating these segments, some might contain encoun-
ters. Encounters are the term used to describe instances
of design patterns within the level generation process.

Apply Design Patterns

Applying the design patterns to our level generation pro-
cess is done through the use of what we call encounters.
Encounters are used to apply instances of design pat-
terns within the level generator, as shown in figure 6.
The larger level segments contain locations for encoun-
ters. These encounters are smaller level segments which
contain challenges involving certain mechanics. To cre-
ate an added layer of depth to the generation of the de-
sign patterns, it is also possible for an encounter to con-
tain other encounters. So a movement-based jump en-
counter could contain smaller danger encounters within
it. Thus, the generator can create level segments that
pose both a movement-based challenge, as well as a
danger-based challenge.
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Figure 6: The grammar expands the level into 20x20
segments and gives a first impression on how the final
level will be shaped. Note the blue-colored encounters,
indicating that these will be translated to specific game-
play situations.

Final adjustments

The level generator proceeds with doing small adjust-
ments regarding object rotation and removing any vari-
ables which are not nescessary for the parser. Variables
that are used by the gate and lever mechanisms, how-
ever, are left as these are important for the parser to
identify which gate is linked to which lever. This leaves
us with the final level (as shown in figure 7) that can be
exported as a text file and used by the parser.

Parsing in Unity

To test the playability of the levels that are generated,
we have created a prototype in the Unity3D engine that
utilizes all of the mechanics described in section 3. This
prototype contains a parser that is able to read the text
file from Ludoscope and puts every tile into a 2D ar-
ray. Tiles are placed accordingly through the use of a
switch-case programming statement, allowing the parser
to instantiate game objects based on the associated tile.
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Figure 7: Final representation of a level, ready for pars-
ing.

Figure 8: A parsed level within the Unity prototype.

6. DISCUSSION

A good level generator should increase replayability, and
be efficient in terms of development costs, i.e. creating
the generator should weigh out the cost of hand craft-
ing the levels. Both of these characteristics depend on
the variation of the possible levels that can be generated.
The generation process described allows for a lot of vari-
ation with a limited set of handcrafted rules. To calcu-
late the minimum amount of different levels that could
be generated, we compose an equation which takes the
number of variations of the shortest path possible, from
left to right with one corner segment (as seen in figure
9). The variables within this equation are dictated by
the the possible variations for each segment. For this
path, it means that the startSegment only has four dif-
ferent possible variations, straightSegment has six (but
is executed four times) and finally the corner and end-
Segment both have three possible variations. Note that
the result produced by this equation is excluding the
generation of encounters entirely. If we would multiply
this answer with the amount of encounters to only the
straightSegment, which has three different variations of
encounters and is applied four times within the level,
this amount would increase significantly.

We can accurately calculate a minimum amount of pos-
sible level variations with the equations below. We di-
vide the equation in two parts so we can present the
difference in possibilities when encounters are included
to the equation. The equation below shows the possible

variations when excluding encounters from the genera-
tion process:
excluding Encounters =

startSegment x straightSegment®
x cornerSegment X endSegment =
4 x 6* x 3 x 3 =146,656

The following equation shows the possible variations
when including encounters found in horizontal segments:

including Encounters =

excluding Encounters x encounters® =
46,656 x 3* = 3,779,136

Figure 9: The shortest possible path that can be gener-
ated. See the caption of figure 4 for an explanation of
the abbreviations.

These calculations show that for the smallest possible
level, we can have over approximately 3,7 million
different versions when including the encounters. It
is important to note that differences in the levels are
much more subtle when including encounters in the
calculation as this can be as simple as one platform
being moved a few tiles. When excluding these encoun-
ters from the calculation, the variation is much more
prominent within the level as it involves changing the
layout of at least one segment of the level.

The approach described in this paper allows game
designers to generate a multitude of levels containing
collaborative gameplay. Advantages of our approach
are the fact that it is rule-based in a way that allows
intuitive inspection by human game designers, that it
is generic enough to be applied to different games, and
that it can, in principle, be applied in a mixed-initiative
setting (Karavolos et al. 2015).

In our system, collaboration is enforced by requir-
ing encounters for collaboration in specific parts of the
level, e.g. in the patterns for the corners. However,
the approach taken in this project is very modular,
with forms of local collaboration designed especially for



small segments within a level. Except for those areas
of the level, there might not be interaction between
the players. Collaboration could of course also occur
outside of the collaboration segments, and even outside
the game. More varied and meaningful ways to control
and guarantee collaboration could include adding more
cooperative game mechanics, such as the ones described
in (Rocha et al. 2008) or adding more types of design
patterns, such as the ones in (Seif El-Nasr et al. 2010).
Perhaps this creates enough variation to compose a
level completely of collaborative patterns. To find out
to what extent people actually like or prefer these
different kinds of pattern-based levels it is necessary to
study how players actually play the game, and where,
how, and how much they collaborate.

While designers will need to spend time designing their
grammars for the level generator, this can be worth the
effort when compared to the amount of time saved when
the generator is functioning properly. A functional gen-
erator can create levels in a matter of seconds and even
then can be tweaked should the designer feel the need
to do so. Furthermore, spending time on finding out
how all of these grammars and mechanics are going to
interact with each other gives the designer an idea on
whether or not some mechanics will fit the game as they
are meant to. Finally, any system created by the de-
signer can also be applied to other future projects that
contain similar mechanics and/or gameplay, as opposed
to games which have a level generator centred around
it’s core mechanics.

Although we have chosen to implement this method
of level design to the specfic genre of puzzle-platform
games, we believe the approach can be useful for other
genres as well. For example, in the shooter genre, a
similar method could be used to create levels containing
areas fit for different styles of combat. In the rogue-
like genre, it could be used to generate dungeons, using
encounters to generate various kinds of rooms.

7. CONCLUSIONS

In this paper we have shown how design patterns can
be used to generate levels for collaborative puzzle-
platformers. We have used a method based on gener-
ative grammars to create a path in space, and trans-
form this path into level segments with variable ele-
ments. These variable elements can be transformed into
instances of game design patterns. We have identified
several game design patterns that incorporate collab-
oration between players, including the upsy-daisy, the
timed level /gate and the common enemy patterns. The
variation in the levels this generator can create derives
from the combination of variable path length, number of
possible level segments, and the number of encounters
that each template can contain.

Limitations of the approach were discussed, as well as
possible directions for further work, which include more

systematic ways to control and enforce levels of collab-
oration, study empirically how players actually collab-
orate within and around the game, giving the designer
more control over the generation process in a mixed-
initiative setting, and the application to other genres of
games.
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