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Abstract: Since the first release of modern electric vehicles, researchers and policy makers have
shown interest in the deployment and utilization of charging infrastructure. Despite the sheer volume
of literature, limited attention has been paid to the characteristics and variance of charging behavior
of EV users. In this research, we answer the question: which scientific approaches can help us
to understand the dynamics of charging behavior in charging infrastructures, in order to provide
recommendations regarding a more effective deployment and utilization of these infrastructures. To
do so, we propose a conceptual model for charging infrastructure as a social supply–demand system
and apply complex system properties. Using this conceptual model, we estimate the rate complexity,
using three developed ratios that relate to the (1) necessity of sharing resources, (2) probabilities
of queuing, and (3) cascading impact of transactions on others. Based on a qualitative assessment
of these ratios, we propose that public charging infrastructure can be characterized as a complex
system. Based on our findings, we provide four recommendations to policy makers for taking efforts
to reduce complexity during deployment and measure interactions between EV users using systemic
metrics. We further point researchers and policy makers to agent-based simulation models that
capture interactions between EV users and the use complex network analysis to reveal weak spots in
charging networks or compare the charging infrastructure layouts of across cities worldwide.

Keywords: charging infrastructure; complex systems; complex networks; modelling

1. Introduction

The number of electric vehicles (EVs) is expected to increase exponentially in the
coming years [1,2]. To meet this rise in EV growth, policy makers and market parties are
increasingly deploying several private, semi-public, and public charging points, both AC
and DC. The growing presence of charging points generates a multitude of interactions
between EV users, particularly in metropolitan areas, where a charging infrastructure is
largely part of the public domain [3].

The planning of public AC charging infrastructure (CI) is challenging, as (i) multiple
stakeholders with different interests are involved; (ii) the required public space for CI
is scarce and needs to be weighed with other public interests [4,5], and (iii) CI needs to
facilitate charging needs of different modalities [6–8]. Yet, policy makers are limited in their
choices as to when and where to deploy what type of CI. For policy makers, developing
public CI is a balancing act to reduce over-dimensioning (leading to high investments and
public scrutiny), as well as under-dimensioning of available CI (leading to limited access of
EV users) [9,10].

Since the first release of modern EVs, researchers and policy makers have shown
an interest in zero emission mobility [11], particularly in the planning of public charging
infrastructure and how policy makers may optimize its development and deployment [12].
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Researchers have traditionally analyzed and optimized charging infrastructure through a
demand-side approach to charging infrastructure planning. This approach encompasses
an estimated charging demand (i.e., the number of charging points or kWh) as input for
planning methods [13]. Planning methods involve (i) planning using spatial operational
research methods [14,15], (ii) data-driven methods using spatiotemporal presence of ve-
hicles (mostly non-EV) data [16,17], and (iii) models focused on charging behavior [18].
The problem with these models is that they are unable to fully capture the complexity of
charging behavior and EV user interactions [1]. The use of these models induces a linear
scaling between the system’s supply (CPs) and demand (EVs). As a result, predictions
from linear models may lead to overestimation of charging infrastructure performance and
underestimation of its convenience for EV users [1]. Inaccurate predictions can result in the
under- and oversupply of CPs, leading to ineffective deployment strategies and inefficient
use of CI. It is, therefore, important for both researchers and policy makers to carefully
choose an appropriate scientific approach that includes the dynamics of the EV system
(CPs, EVs, policy makers, and supporting charging infrastructure), in order to effectively
deploy and use this system. This understanding is also important for policy makers, as
interventions in the EV system to optimize efficiency may have unexpected, counterproduc-
tive outcomes. We see that, despite the sheer volume of literature, little attention has been
paid to the characteristics, variance, and interdependencies of the behavior in EV systems.

This research contributes to current literature by proposing guidelines for selecting a
scientific approach, given the properties of charging infrastructure (e.g., charger type or
network density). We do so by providing an abstraction of charging infrastructure, as a
system of supply and demand, in which social interactions take place. Systems in which
social behavior plays a role may contain tipping points and regime changes, in which the
dynamics that generate the data fundamentally change when the system changes [19–22].
We call these systems complex, in which the complexity lies in the limited ability of models
to predict the system’s future states using the knowledge of its current state [19,20,22]. Our
proposed guidelines include three ratios that estimate the rate of complexity in the system.
We suggest how typical aspects of complex systems can be applied to public charging
infrastructure, in order to offer a deeper scientific understanding of the dynamics of EV
charging. We expect that the use of complex systems methods analysis helps to improve
the accuracy of simulation studies.

In this research, we use a two-step approach. In Section 2, we introduce the concept
of social supply–demand systems (SSDSs) as a specific version of a publicly available
resource (or common-pool resource (CPR)) [21], such as public charging points. We provide
a mathematical notation of its main constituting elements. We argue that properties of
SSDS systems may be understood by taking a complex systems perspective. In Section 3,
we describe the most prominent complex system properties and reflect on its suitability to
describe charging infrastructure utilization. In Section 4, we develop metrics to estimate
and compare the complexity in SSDS systems and reflect on complexity of different CI
systems. Based on the values of these metrics, we propose how to use a complex systems
methodology to analyze and model the utilization of charging infrastructure (Section 5).
Finally, in Section 6, we elaborate on the consequences, for both research and policy makers,
when the complex systems approach is applied.

2. General Abstraction of Infrastructures as Systems of Supply and Demand

In economic theory, the consumption of publicly accessible goods from a large pool,
which may exclude users from consuming resources and where one user’s large consump-
tion may preclude other users, is called a common-pool resource (CPR) problem [21].
Examples of such systems are open natural systems (fishery, land use) [21,23]. The lack of
a central controller in such systems leads to behavioral questions of resource allocation,
free riding, and collaboration [24]. A central theme of CPR is the sustainable use of the
resources to avoid depletion [21,25,26]. Researchers have argued that public infrastructures
may conceptually be seen as a non-excludable and -exhaustive resource and, hence, as a
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CPR [27], although mathematical derivations have pointed to significant differences due to
rivalry [23].

A particular variant of a CPR is a so-called social supply–demand system (SSDS).
An SSDS is a system with two kinds of entities (supply and demand), in which resources
from an infinite pool are transferred at a limited set of outlets from an individual item of
one kind (the supply side) to an individual item of the other kind (the demand side). The
social part of SSDS relates to interactions between elements (either of the same kind or
between both kinds), which results in non-trivial behavioral patterns. The term non-trivial,
in our definition, means behavior that changes non-linearly when scaling the system’s
size by increasing the number of entities. The key differences between CPR and SSDS
are as follows. In an SSDS, transactions of the supply side are subject of research, rather
than the consumption (in size) of the common-pool resource. In an SSDS, the complex
interactions occur due to the small size of the supply side outlets, compared to the size
of the population, whereas in CPR the resource pool is small, compared to the demand.
In an SSDS, the focus is on the growth (deployment) or decline of the system, in terms
of the size of supply and demand side elements, rather than depletion of the resource
pool. As such, SSDS provide opportunities for studying CI, as CI is also characterized as a
supply–demand, with a limited set of outputs and social component.

The challenges of understanding SSDS dynamics have been explored for other systems
(Table 1). Some systems have a strong technological component (e.g., electricity and traffic),
while others have a larger social behavior component or are based on natural systems.
The dynamics that are researched using complex systems theory vary from analysis of
emergent phenomena (segregation of education) to path dependency (healthcare) and
resilience to perturbations (energy grids). In the following, learnings from these cases
are used to generate key variables in characterizing SSDS, which can be translated in
mathematical notations.

Table 1. Examples of social supply–demand systems.

System Supply
Side/Resources

Demand
Side/Users Environment Transactions

Education School, classes Students/pupils Geospatial map Knowledge transfer [28]

Healthcare Hospitals, care centers Patients Geospatial map Health Care [29,30]

Electricity Electricity generators:
central and decentral Household

Network of
High mid and

low voltage grid
Energy [31–33]

SSDS have spatially fixed resource access points, each with a specific number of outlets
that constantly offer the resources at outlets at a particular rate. The users of this system
require this resource and occupy the outlets of the access points for finite time periods, in
which they load a finite volume of the resource, sometimes with a specific quality. Once all
outlets at an access point are occupied, the access point is said to be occupied. The users’
desire or ability to wait or choose another access point, or their willingness to cooperate
with other users to share outlets at resources access points, is user- and context-dependent.

The system S = {E, R, U, T} contains several types of entities: the environment
(E), resources access points (R), and users (U). Next, the system contains transactions (T)
between resources and users. More formally, the system is characterized by an environ-
ment (E) that can be of any size (e.g., an x–y plane), spatially distributed resource access
points R = {r1, . . . , rn}, each with a finite number of outlets, set of spatially mobile users
U = {u1, . . . , um }, and set of transactions T = {t1, . . . , to } made by users. A transaction
is a mapping between one element of R and U at a specific time (τ). Any user (ui) can have
multiple transactions on any number of freely selected elements (R), but these transactions
cannot be simultaneous.



World Electr. Veh. J. 2022, 13, 44 4 of 27

We define an SSDS as having the following conditions: condition (i) |R| < |U|, which
means that there are typically more users than resources, and condition (ii) |U| < |T|, which
means that there are typically more transactions than users. Condition (i) allows for scarcity
and competition in the system. Condition (ii) needs to be satisfied to allow the system
to process learning effects and habits in user behavior. For the EV system, there are
typically more EV users than public CPs and many more transactions than users (e.g., 4.3 M
transactions for 29 k users at 5000 resources access points [3]).

A characteristic of SSDS is the change in size (both growth and decline) of both the
user base (U) and number of resource access points (R) over time. As a result, the set of
transactions (T) may display an increased pace of growth (second partial derivative) over

time ∂2|T|
∂τ2 6= 0 (e.g., traffic density increases or increased pressure on health facilities during

a pandemic). Resources may be added, removed, or moved to balance |U||R| of local supply

and demand of resources. The local optimal |U||R| ratio to vary over space and time and are
dependent on the distribution of the service rate and scaling effects as part of supply side
network density.

2.1. Environment

The environment in many SSDSs is a finite space in a two-dimensional coordinate
system, such that E ⊂ N2 (Table 1). Alternatively, the environment can be modelled as a
network grid (e.g., electricity network). A location (lk) is defined as a point in space, such
that lk ∈ E.

The properties of each location (lk) may be bound by several constraints. First, a
maximum number of resource outlets for each location may apply, as well as a maximum
number of users per location. Additionally, some systems may contain a set of constraints on
the maximum supply rate in specific areas of the environment (e.g., electricity grids). Other
systems, however, may be constrained by the local production of resources at locations (e.g.,
natural systems). The EV system is often modelled as a 2D space, bounded by physical
constraints [34].

In many SSDSs, the distribution of the resource access points in the environment is
expected to influence the behavior within the system [28,35]. For instance, resource access
points may be distributed in a physically connected manner, in such a way that the flow rate
at one outlet may be affected by other outlets (e.g., energy grids and transport of healthcare
assets between hospitals). In such a network of connected elements, an outage of one outlet
may lead to a sudden supply–demand at other outlets in the network [33,36]. Alternatively,
resource access points may also form a network of alternative resource outlets, when the
distance between resources outlets is such that they are considered by users. A typical
example is found in the school choice, where the location distribution of schools affects
selection [28].

Finally, some systems have requirements set on the coverage of the environment.
Healthcare or school facilities, for instance, are distributed such that, for any location (lk) in
the system, a resource outlet is located within a distance smaller than a threshold set by the
government. For the EV system, policy makers are striving for an optimal coverage of the
charging network, while balancing the needs of different stakeholders (e.g., grid providers
and (non-)EV users) [9].

2.2. Resource Access Points

Each resource access point (rι) is characterized by a collection of properties, defined as
a tuple: rι = {lι, oι, cι, qι}. Each rι is located at a unique lι, with coordinates according to the
dimensions of the environment (E). It has a set of outlets oι =

{
o1..oη

}
that allow concurrent

connection (e.g., number of beds in a hospital and number of sockets per charging point).
Each rι has a maximum throughput rate, which is the service rate (cι). In some cases, the
service rate is averaged or a standard over all outlets (e.g., electricity system). In other cases,
each outlet may have a specific service rate, depending on the transaction that takes place
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at the outlets (surgery vs. long intensive care use within a hospital). The quality (qι) of the
resources supplied during transaction may play a role in some systems (e.g., education) and
may also correlate to additional properties (e.g., pricing). At any given time (τ) an outlet
at ri can be in status {0, 1}, in which 0 is non-occupied idle and 1 is occupied transferring
resources. Some specific systems allow for an extra status for being occupied without
transfer of resources, which enables the efficiency optimization of resource utilization [37].

In the simplest abstraction of this kind of system, resource access points do not
communicate with each other, and users are not centrally steered towards the resource
access points. In short, the resources are passive outlets that respond to user demand.
This implies that the resource access points do not share information on the system’s
status or actively transfer resources between each other, but only to the user. Users cannot
gain information on the system’s state through the resource outlets. As such, the system
configuration (supply side and demand side layout) is an important factor that determines
the complexity of behavior in the system.

2.3. Users

Users in the system are individual entities making decisions for resource uptake at
resource access points, based on individual optimization rewards. A user’s collection of
decisions (set of transactions) is regarded as the user’s behavior. This base behavior may
show rational or habitual behavioral patterns. The rational part of behavior involves deci-
sions for choosing specific outlets for their resources, based on cost and benefit factors [38].
These factors can be related to resource access points (R) (transaction supply speed), user
specific properties (user specific preferences), or contextual properties (e.g., distance of a
user to resource access points at that moment of deciding). The habitual part of each user’s
behavior is found in the selection from a preferred or specific set of resource access points
for a given location, arrival time, or place [3,15].

More formally, in the simplest abstraction, users are characterized by a given set
of properties and developing set of attributes, collected over time, defined as a tuple:
uj =

{
Stj, Scj, λj, φj, Tj, ρj

}
. Each user (uj) has an internal storage (Stj) for storing re-

sources, storage capacity (Scj) that describes the maximum speed of resource uptake of the
user, and demand, in terms of frequency (λj), quantity (φj), and quality (ρj). The internal
storage (Stj) and storage capacity (Scj) can affect the frequency of transaction (λj) and
transaction size (see Section 2.4), implying that large storage leads to lower frequency of
use and higher transaction volume. The set Tuj ⊂ T contains the user’s transactions, from
which behavioral rules may be derived.

In many systems, users may adapt behavior if the environment does not meet their
expectations or they discover that different behavior is more rewarding. For example, if the
outlets of the resource access points are unavailable, the user can decide to go to a different
location than originally planned. If this location has an occupancy profile that better suits
the user’s demand profile, a user may change its habits, preferring this location to that of
the old one.

Users are present in the vicinity of other users or occupy resource outlets that other
users were about to decide to use. This inevitably creates user interactions in the system.
In the simplest abstraction of the system, users do not share information with, or adapt
their behavior to, other users. In several systems, there is only limited information centrally
available on resource selection (e.g., school or healthcare selection or route navigation).
There are systems (e.g., ant or bee colonies) where information on distribution of resources
is shared amongst the population [12]. In these more complex abstractions of this system,
users may share information or collaborate. These social interactions may generate more
efficient use of the system; for example, a user that occupies an outlet could make place for
another user [39].
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2.4. Transactions

A transaction is the successful result of a user instigated attempt to connect to a
resource outlet at a resource access point. This mapping between an element of U (uj)
and outlet (oι) at R (ri) is stored as a tuple tp ∈ T and tp =

{
uj, oι, rι, τsp, δτp, Vp

}
. This

tuple (tp) contains the start time (τsp) of the transaction, the δτp is the connection duration,
and Vp is the size of the transaction. The size of the transaction may be described by a
simple linear function (e.g., electricity current function) or can be more complex and even
unquantifiable (e.g., health and education). Since a user may have multiple transactions at
the same outlet, we specify such T

uj
rι as the set of transactions of uj at rι.

When a user instigates a transaction, it observes part Rlk ⊂ R of the local resources in
the system but has no complete information on the system state. The locality of available
information produces a restricted preference set R

uj
lk
⊂ Rlk for users. This set is much

smaller than the actual system size. In most systems, information on the used capacity of
resource outlets is unknown for users.

It can be the case that, due to occupancy, a user needs to make multiple attempts to
successfully connect to a resource location. Some systems (e.g., healthcare and education)
have waiting lists (queues), where the actual demand for resources is stored. In other
systems, successive attempts may lead to competition for resources (e.g., natural systems)
or sudden stagnation of transfer (e.g., traffic jams). Finally, in some systems, the time of
transferring resources is shorter than the actual connection time. This results in the resource
outlet being connected in an idle state of the resource outlet, as mentioned earlier.

2.5. Research Methodologies for Charging Infrastructure as Social Supply–Demand System

In the previous sections, we showed a general abstraction of an SSDS. We concluded
that charging infrastructure fits with the provided abstraction of SSDS. We also found
existing systems that had a similar fit. A closer examination of research methodologies,
used for similar systems, shows that complex systems have been used to model and
understand the behavior in those systems (see references in Table 1). This reinforces our
original hypothesis that, when modeling the EV system, the complexity of behavior should
be considered.

3. Charging Infrastructure as a Complex System

Complex systems (CS) are an approach towards system analysis that focuses on
emerging structures at a macro level that are derived from micro-level behavior [33]. The
methods used in the CS have proven to provide a deeper understanding of systems that
are difficult to predict from an individual level [33]. The application of CS can be found in
ecology, biology, healthcare, and social studies [22,40–42]. Additionally, CS has proven to
support creating public policy making [43] and analyzing critical infrastructures [44].

Although an extensive amount of literature has been written on CS, there is neither a
sharp definition nor a set of preconditions for a system to be complex [22]. The concepts of
complexity are embraced by other fields of science, each with its own emphasis on specific
properties of complexity [22]. Using properties, as described by Ladyman [22], we define a
CS as a system in which the number of interactions scales non-linearly with the number of
interacting components, in which the initial conditions and perturbations strongly affect
the behavioral regime and multiple pathways exist, to which the system can grow for the
same given initial conditions [22]. From this definition, a set of features was extracted. In
the next sections, we propose how these features can be included in the analysis of the EV
as a complex system.

3.1. Feedback Loops

Feedback loops are core elements of a CS that occur because interactions of elements
in the system are inputs for future behavior of other elements [22,43]. The effect of the
feedback loop on the behavior may be reinforcing (amplifying earlier behavior) or balancing
(damping earlier behavior) [45]. Effect loops vary in size (linear and non-linear [45]), time
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scale (varying from instant to delayed [43]), and aggregation scale (from individual level
to the whole system [46]). Examples of feedback loops can be found in natural systems of
supply and demand (Table 1), where prey (supply side) are eaten by predators (demand
side). For instance, successful foraging strategies of predators lead to reinforced hunting
strategies of individuals and groups (herds) [46].

In the EV system, we see feedback loops, related to policy makers’ charging point
deployment strategies (see Figure 1) [47]. Policy makers’ decisions on where and when
to deploy CPs may include actual requests for CPs by EV owners, complaints from both
EV and non-EV users, and key performance metrics (KPIs), based on charging data [9,48].
Policy makers may use CP performance metrics from charging data to evaluate decisions for
CP locations [48,49]. This creates a feedback loop that may reinforce deployment decisions,
even though policy makers may not have the full information on the system state [50]. We
also observe a feedback loop within the system, related to the demand side population
growth, as the existence of CPs in an area has found attract new EV users [1]. An increase
of EV users will result in an increase of interactions and, hence, affect the other feedback
loops. On the other hand, negative experiences with EV charging may result in EV users
selling or not replacing their EV [51].

Figure 1. Illustration of feedback loop, related to policy makers’ charging point deployment strategies.

3.2. Learning and Adaptation

Elements in a CS make autonomous decisions, in line with their set of behavioral
rules and experiences. EV users may learn by adjusting their behavioral rules, based on
experiences. We call this learning. Adaptation refers to elements of the system that can
autonomously adapt their behavior to a changing environment [22]. Changes may be
sudden (perturbations) and present at the element level (e.g., addition of new demand side
elements) or at the macroscale (climate changes).
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Within the EV system, learning is based on EV user experience and interactions during
their use of charging infrastructure [3]. At a user level, (un)successful charging behavior, in
terms of CP selection in time and space, may lead to self-reinforcing behavior (illustrated in
Figure 2). It is assumed that EV users strive for the best convenience of charging and adapt
their behavior to achieve this. Negative experiences, due to occupancy of preferred CPs,
may, thus, shift behavior in when and where to charge. As an example, an EV user may
decide to arrive earlier at a CP to increase the probability of occupying that CP or reroute to
different CPs that have a lower occupancy rate, in order to be ensured a charging place [3].

Figure 2. Illustration of patterns of learning and adaptation of EV users.

Similar to adaptation patters in natural systems, we expect that, due to increasing
deployment of charging infrastructure, EV users will adapt their preferences to alternative
CPs for reasons of distance or experienced occupancy (see Figure 2) [52–54]. Additionally,
it has been found that pricing incentives also lead to adaptive charging behavior, in terms
or arrival and departure times [55].

At the macro scale, we expect adaptation of EV users, due to exogenous factors. As
EV adoption matures (going from early adopters to mainstream EV users), we expect that
charging demands will also change. Specific user types, such as taxis and car sharing,
have adopted electric drivetrains lately [56,57]. User expectations and charging behavior of
these groups is expected to differ. Existing EV users will adopt to the patterns of charging
behavior of these new user groups, as they interact within the EV system.
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3.3. Emergence

The literature has shown that interactions between elements may lead to unexpected
spontaneous patterns of behavior at macro level, such as collaboration and competi-
tion [58,59]. These macro level patterns are known as emergent behavior. This type
of behavior is neither part of the resource access point selection behavior nor controlled as
a goal that the individuals strive for.

We see emergent patterns in many systems. A classic example is a flock of birds. All the
birds want to be part of the flock, but the flock has no leader or centralized coordination [60].
Additionally, traffic jams are emergent patterns that follow specific patterns, unrelated
to individual driver behavior [61,62]. Research in critical infrastructures has revealed a
tendency of these systems to react similarly to perturbations; the size of the reaction fits a
power law [62,63]. The emergent pattern of reaction is neither centrally coordinated nor
part of the individual elements.

As the EV system matures, and the density of an EV system increases, emergent
patterns of competition between EV users for CPs or emergent patterns of scheduling may
appear. Patterns of competition were found in earlier research that analyzes unsuccessful
connection attempts of an EV user to a CP [1]. The EV system may also exhibit a tendency
to react to perturbations similar to critical infrastructures, as it is connected to other systems
(i.e., electricity and road infrastructure). These emergent patterns are bound to affect the
perceived convenience of using the EV system and create a feedback loop.

Regarding emergent patterns of scheduling, we expect a development towards subnet-
works, similar with activity patterns within the charging network, will develop. A subset
of CPs, that are all relevant alternatives to each other and share the same pool of EV users,
will reveal similar patterns of arrival and departure. This, in turn, may lead to parts of the
network being driven by competition or collaboration. In other subnetworks, we expect
activity patterns to be driven by a local mixture of user types.

3.4. Network Formation and Resilience

Research has revealed that critical infrastructures tend to grow towards a network
of connected elements, either physically connected or connected by overlapping behav-
ioral choices [33,63]. This network structure may contain one or more large, connected
components. The network is said to be robust when the network is able to accommodate
perturbations in the system [64,65]. For example, when a perturbation in the system does
not lead to a breakdown of the network or the perturbation of travels through a limited
number of elements in the system [66–86]. In this case, behavioral patterns tend to reoccur
after recovery [33]. On the other hand, a network is said to be vulnerable when perturba-
tions pass through large parts of nodes in the network or the system is damaged and can
no longer function [65].

Research on vulnerability of complex networks has shown that, as the load in the
system increases, cascading failures are more likely to occur [7]. The likelihood of cascades
does not gradually increase with system load, yet it reaches a critical point, at which
the propagation of failures suddenly increases [69,70]. Therefore, during the design and
operation of a system, the EV system load needs to be balanced with the system’s economic
benefits. A fully loaded system may potentially lead to larger system failures, while
suboptimal operation, in terms of load on the system, leads to a more robust system [68].
Likewise, intelligent rerouting of load in a complex network may decrease the effect of
perturbations but require some form of central steering in the system.

As the density of charging infrastructure increases, the number of relevant alternatives
CPs within walking distance to a destination of an EV user increases, as well, which leads
to a network of alternative charging points [18]. Having more than one relevant alternative
may lead to economies of scale and a lower required ratio of CPs per EV user. A negative
effect of a denser charging network, however, may be the increased length of perturbations.

Earlier research on the vulnerability of charging infrastructure has shown that a
disturbance in the system, either a malfunctioning or unexpectedly occupied charging
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station, can cause a cascade of failures in the system (illustrated in Figure 3) [18]. Simulation
models of EV user charging behavior have shown that the number of failed connection
attempts to an EV system is sensitive to changes in the number of users for a given size of
the infrastructure under relaxed circumstances (limited users and without noise) [71].

Figure 3. Illustration of cascading effect of an occupied CP.

3.5. Self-Organisation

A typical property of a CS is the lack of central control. This means that the system is
self-organized in a bottom-up manner [22]. A CA, as a whole, may become more organized
over time, without any external forces on the system [72,73]. In such a state, the system
organized itself such that the size of the cascade of a propagated perturbation displayed a
power-law distribution [74–76]. This implies that many perturbations cause little impact,
but some cause massive system scale impacts. This CS aspect has been found in public
infrastructures, such as the electricity network [75].

We expect an EV system self-organizes in two aspects: (i) network components with
robustness or vulnerability, similar to critical infrastructures, and (ii) segregation of CPs for
dedicated EV user types. First, for the EV system, we expect that the system grows towards
a dense network of CPs, EV users, and their interconnected relations. From this, we expect
that both the number of detours will increase, as more pressure on the EV system leads to a
larger number of failed connection attempts, as well as the number of diverted EV users
to other CPs [71]. In a dense network, we expect the distribution of the cascade length
to move towards the SOC, as found in critical infrastructures. Second, we expect CPs in
specific areas to be used for specific user types that prefer high availability of CPs over
location. As an example, EV users that are limitedly bound to charging locations (logistics,
taxis, or overnight charging e-carsharing) will select CPs that have high availability when
they arrive at their destination.

3.6. Non-Linearity

A non-linear system is one in which the output of a system does not scale linearly
with the change of the input or parameter of the system [43,77]. In a non-linear system, the
superposition principle is that the system state cannot be obtained by the addition of two
solutions or one solution multiplied by a factor. As such, scaling the size of such a system
may result in different regimes of behavior at the micro and macro level, without changing
the properties of entities at the micro level.

Recent literature has found non-linearity when scaling the EV system in the supply
side, as well as in the ratio of supply versus demand. More specifically, three types of
regimes may be present in the EV system during scale up: (i) a linear regime in the early
stages, (ii) nonlinear increase of performance (due to economies of scale), and (iii) nonlinear
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decrease of performance (due to competition effects) (as illustrated in Figure 4). Regarding
the scaling of the supply side, we see economies of scale, due to network formation, as
the density of the charging network increases [50,78]. As the network density increases,
these economies of scale lead to a marginal decrease of the performance metrics and
exponential increase of inconvenience for EV users, due to CP occupancy. Recent research,
that involved the addition of new EV users to an existing charging infrastructure, revealed
that performance metrics growth marginally decreased towards a maximum, while failed
connection attempts increased exponentially [71].

Figure 4. Illustration of non-linear scaling.

Moreover, in the case of public charging infrastructure, there exists EV users of differ-
ent user types, using the same charging stations, which may lead to unexpected results for
key performance indicators (KPIs) as the system scales [11,49].

3.7. Path Depencency

The development of a system’s behavior over time is said to be path-dependent.
This refers to the fact that initial conditions and ensuing interactions between elements
determine that certain development pathways are locked [79]. As such, currently evolving
and interacting components and stakeholders, on different levels, play an important role
in the system’s future state [30]. An example of path dependency is found in health care
systems. The legacy of historical structures and stakeholders is the reason that it is difficult
to reform the health care system from its current financial structure to another [43].

Similarly, in the EV systems worldwide, we see different versions of initial conditions,
due to the local context: metropolitan areas with public parking locations focus strongly
on public AC charging, whereas areas with more private parking locations focus on DC
and private charging. Once the system is rolled out, it may be difficult for policy makers to
change the local EV system from pure AC public charging to DC only charging and vice
versa, due to all the interactions of charging infrastructure with users and other systems.
Therefore, the mix in charging infrastructure technologies in a metropolitan area is likely to
be more dependent on the initial roll-out strategy [23] than subsequent developments. This
emphasizes the necessity of future scenario planning for policy makers.

On a local scale, path dependency is present, as the deployment of new CPs has
been found to lead to local uptake of additional EV users [1,80]. This feedback loop
implies that the current spatial distribution of EV users may be causally related to the
developed infrastructure over time. This implies that any decision for CP deployment
deviating from current location may have led to a different layout, in terms of spatial EV
and CP distribution.
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3.8. Phase Transitions

Phase transitions are large changes in macro behavior or a system that are due to
minimal changes [43]. Phase transitions occur either suddenly or gradually when changing
elements reach a critical point. In some cases, there are early warning signals in the system,
such as a critical slowing of system metrics, that announce an upcoming tipping point [81].
In many cases, it is desirable to avoid phase transitions, as the new state of the system may
behave differently or react differently to policy interventions [58]. In systems of supply and
demand, phase transitions have been found in collapsing stock markets, sudden traffic jams,
or social networks [82]. While models have provided insight into, and measurement of, the
drivers of transitions [82–84], it is still difficult to predict these in chaotic systems [85].

For the EV system, not only will the number of EVs and charging points grow in the
near future, but we also expect changes in EV user behavior, leading to different aggregate
patterns of system performance for four reasons. First, the improved range of new EVs
is expected to influence the behavior of users, as high battery full electric EVs (FEV) are
expected to show different charging behavior than plugin hybrid EVs (PHEVs) [6,86].
Second, the ongoing increase of EV users will lead to new types of user groups adopting the
EVs as their primary transport. While during the first years, EV adoption was particularly
attributed to early innovation adopters curious about new technologies and driven by
environmental consciousness, the new growth is expected to contain the early majority
that is driven by economic motivations and had high expectations towards CP availability.
This sets new requirements for charging infrastructure and corresponds to the idea that
technology maturity affects usage behavior, as seen in other fields of innovation [87]. A
third reason is that not only the user groups will differ, but also other types of modalities
(e.g., vans and heavy-duty trucks) will adopt electric drivetrains [88]. Finally, an increased
number of users will also inevitably lead to an increased number of non-trivial, user-user
interactions in the system.

4. Analyzing the Complexity of the EV System

So far, we have described the EV system as a social supply–demand system (SSDS),
and we have projected the properties of complexity on the EV system. Regarding this
complexity, we pointed to (i) limited predictability of behavior due to interactions, (ii) issues
of scaling non-linearly, and (iii) existence of non-measurable effects (not measurable in
transactional data). Not all SDSSs display complex behavior, and some configurations of
SSDSs may push the system towards more complex behavior. Moreover, the complexity
of a system is a gradual scale of factors that drive the complex behavior, rather than a
true/false value.

In this section, we elaborate on the how to analyze the complexity of the EV system.
We try to reason about certain properties and ratios in the system that are drivers for com-
plexity. We see different configurations of EV systems in different types of geographic areas
(e.g., rural or metropolitan areas), with different charging modes as dominant [89], i.e., AC
home charging, public DC fast charging, semi-public AC charging, or AC public charging.
We ask ourselves where the EV system and particularly metropolitan AC charging fits on
the scale of complexity. Insight into the current state of complexity, and its drivers of the
EV system, provides us insight into how this complexity is going to change over time. Will
the current challenges of the EV system be relevant in five years, and what is the future
relevance of the current research outcomes?

4.1. How Complex Is the EV System?

The rate of complexity in a system has been the subject of many studies [40,90,91].
People have tried to understand quantitative measures of complexity by using quantita-
tive methods related to physics, information theory, or computational science [90,92,93].
Researchers, however, have experienced several difficulties with these metrics, including
(i) computational challenges, (ii) limited descriptive meaning, and (iii) limited comparabil-
ity between models or systems (e.g., [90,92,93]).
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In practice, there is only limited information of elements in the system available.
Available data may include individual transactions between supply and demand side
elements (e.g., charging transactions), but not social interactions between either side of the
system. In cases of health care or education, additional information about waiting lists may
be present. Nonetheless, the set of available data are not sufficient to exactly measure the
complexity of the system. Moreover, metrics on aggregate that are based on transaction
data level may not capture aspects of locality- and time-dependent use patterns. Therefore,
rather than calculating a precise number for the complexity of the EV system, we present
ratios that indicate and qualify its complexity [22,94].

Based on the abstraction of a public charging infrastructure, we observe three condi-
tions for the ratios that determine complexity of behavior in the system. We determine
equations for three ratios, based on the elements defined from our description of a social
supply–demand system.

The first ratio describes the rate of competition, in terms of the necessity of sharing
resources using overlapping sets of CPs, selected by EV users, and relates to the common-
resource pool (CPR). The second describes pressure on the system, related to the demand
and service rates, and uses the concept of queueing theory. The third ration describes how
the impact of a single transaction on other transactions spreads within the timeframe and
vicinity of the transactions. The ratios allow us to reason about the rate of complexity of
extreme cases. For instance, why are AC public chargers complex and DC fast chargers
(similar to current petrol stations model) or AC home chargers not complex?

4.1.1. Ratio 1: Necessity of Sharing Resources

The first ratio relates to CPR literature and involves the necessity of sharing resources
R = {r1, . . . , rn}, by users U = {u1, . . . , um}, in a set of transactions T = {t1, .., to}. This
ratio builds upon the clustering metric for bipartite graphs [95]. For the first ratio, we
consider the overlapping competition of users over access points, in relation to the union
set of access points to choose from. The more competition there is for every transaction in
the larger part of the system, the more complex interactions can be expected. We see that
the number of the demand side elements is much larger than its supply side counterpart,
such that, at any given time (τ), users may select CPs that are occupied. A poor system level
approximation would be |U||R| , but this does not include locality of EV users’ activity patterns.

In Section 2.4, we have described that each user uj ∈ U makes decisions at some
frequency (λj) (transaction per time unit) for a transaction (tp ∈ T) at resource (rι ∈ R).
Most systems are partially observable, which means that each transaction decision a limited
set of resources is visible Rlk ⊂ R. For each t

uj
rι ∈ T

uj
rι within the user transactions, a subset

of resources (Rui ) will be preferred, where R
uj
lk
⊂ Rlk.

We, therefore, setup the Ratio1, in line with node clustering metrics in bipartite
graphs [96]. First, we set a timeframe (τ) to τ + δt, with a transaction set of Tt,t+δt ⊂ T. We
define A as the set of all pairs of transactions ta

x, tb
y from two different users ua, ub, where

τta
x , τtb

y
∈ Tt,t+δt ∧ ua 6= ub at their given location lx, ly, based on the location of the resource

access point. We consider the set of considered resources Rua
lx

, Rub
ly

of users and observable
resources per location Rlx , Rly . We calculate Ratio1 as follows:

Ratio1 =
1
|A| ∑

a ∈ A

∣∣∣Rua
lx
∩ Rub

ly

∣∣∣∣∣∣Rlx ∪ Rly

∣∣∣ (1)

With this first ratio, we relate potential competition over the alternatives to both time
and space and normalize this value over the size of the set of all possible transactions. This
first ratio may be calculated on a system level, but also locally (e.g., neighborhood or a
connected set of alternative CPs). For the case of home charging, we see that the value
of Ratio1 approaches 0 as (i)

∣∣∣Rua
lx
∩ Rub

ly

∣∣∣ is zero, in most cases, since each user has its
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own CP (Figure 5a). On the other hand, for DC fast charging, all users may potentially
select any of the available outlets at arrival, leading to a value close to 1 (Figure 5c). For
public charging infrastructure, we see that the set of overlapping

∣∣∣Rua
lx
∩ Rub

ly

∣∣∣is smaller

than
∣∣∣Rlx ∪ Rly

∣∣∣, which leads to a value significantly lower than 1 and higher than 0. For

semi-public charging, we expect values close to DC fast charging, since both Rua
lx
∼ Rub

ly
and Rlx ∼ Rly . We expect that complexity decreases at the limits of this ratio (0,1).

Figure 5. Overview of different configurations for ratio1. (a) Public charging; (b) private charging; (c)
DC fast charging.

4.1.2. Ratio 2: Probabilities of Queuing

The second ratio (Ratio2) specifically focuses on the complexity of behavior in the
system, related to the time aspect (e.g., service rate of supply and demand). This ratio
builds upon the concept of supply and demand rates, which has been studied in queueing
theory [97]. In queueing theory, the ratio between λ

µ determines the probability of a queue’s
existence. In this equation, λ is the arrival process, assumed to be a Poisson distribution
λ (defined in our SSDS as λj), and µ is the exponentially distributed service time (δτ in
our SSDS) [97]. The literature on DC fast charging infrastructure has modeled outlets as
a multi-server network queue [98,99]. Yet, for AC public charging, the following aspects
make queuing models complex in highly occupied systems [97]: (i) µ is not a property of the
outlet alone, as it is related to parking behavior, rather than transactions size; (ii) EV users
have shown to be strongly habitual, causing multi-modal Gaussian arrival patterns, rather
per uj [3]; and (iii) when EV users arrive at a location, they have individual preferences for
Ruj , even if they overlap in locality.

In line with network queueing models, we define Ratio2 as the duration time of a
transaction divided by the mean time between arrivals at rι. To take locality into account,
we average over each set of local observable resources Rlk , rather than over the whole

system at once (e.g., λ
µ ).

First, we considerR as the set of all Rlk in the system. For each Rlk ∈ R, we calculate
the local λ

µ and average over the set of resources in Rlk , and we call this Λt. Ratio2 is,
therefore, calculated as follows:

Ratio2 =
1
|R| ∑

∀Rtk∈ R
Λt (2)

The value of Λt is calculated by using the following steps. First, we consider the union
set of transactions at all access points within Rlk , where rγ ∈ Rlk as Tlk =

{
t1
r1

, .., t f
rε

}
and
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te
rι
∈ Tri . From the tuple te

rι
=
{

uj, ol, ri, τs, δτ, Vp
}

, we use the connection duration δτ as
µ; information in tuple te

ri
allows us to define λe

rι
as the interval between two consecutive

transactions te−1
rι

, te
rι

, using τ from te
rι

and τ + δτ from te−1
rι

. In Figure 6, this is displayed as
time between sessions. We can now calculate Λt =

1∣∣∣Tlk

∣∣∣ ∑
∀te

rι∈ Tlk

δτ
λe

rι
.

Figure 6. Illustration of arrival and departure patterns for different type of charging infrastructure.

In Figure 6, we provide a schematic overview of how charging sessions are distributed
over time. For DC fast charging, we see that the connection duration δτ is short, due to
the high transaction speed and λ varies during the day. Variation of λ (Figure 6) is related
to traffic intensity (peaks in the morning and evening). For a private home, the charging
sessions are long (e.g., overnight charging ~ 14 h), and inter-arrival times may be 24 −δτ,
in the case of one EV per CP. For both semi-public and public AC charging, the sessions
are also long. Thus, many arrivals may potentially take place during a connection time
within the local Rlk . For semi-public charging, we expect the values to depend on the
specific function of the semi-public location (e.g., garage in dwellings may be different than
park-and-ride locations). For public charging, we expect different values of λ, based on the
local population composition.

Regarding future values, we expect λ per user to decrease over time, as battery
sizes increase. Yet, we expect δτe

rι
to not change dramatically over time, as charging

behavior often involves parking activities. As such, we expect limited changes to Ratio2
and, consequently, limited changes in the complexity for AC public charging.

4.1.3. Ratio 3: Impact of Transactions on Others

The third ratio relates to the spread of the impact of a single transaction on other
transactions, as found in the literature on cascading perturbations [36,100]. A decision of a
user to make a transaction may affect other users’ transactions at the CPs in the vicinity;
this, in turn, may have a knock-on effect on other transactions. The spread of impact
cannot be measured from the transactions, since each transaction is a successful connection
attempt, resulting in an as-is state that includes the knock-on effect. We, therefore, define
this ratio by estimating the effect of taking an alternative decision (over all alternative
resource outlets) to other users’ ability to connect to their preferred resource outlet. We use
an iterative approach, as the alternative decision of the first user may lead to a cascade of
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successive alternative decisions of other users. The volume of the spread over all alterna-
tives normalized against the set of geospatial alternatives (Rlk ) gives us an indication of the
average spread per transaction [101]. We note that, similar to other complex infrastructures,
the calculation of these metrics required simulation models, as it is not feasible to measure
this value in practice [102].

We setup Ratio3, in line with literature on cascading failures, as follows [103]. In
line with the other ratios, we set a timeframe (τ) to τ + δτ for a transaction subset of
Tt,t+δτ ⊂ T. For ∀tp

uj
rι ∈ Tt,t+δτ , we initiate the set SPtj = {}, which we fill with trans-

actions tl
uj
ri affected by the alternative decisions that uj may have made for transaction tl

and initiate AO = {}, as the set of alternative rj, which we have taken into consideration
during calculation. We iteratively perform the following calculations.

(1) ∀tl
uj
rι of ujwe regard as the set of alternatives minus the already considered r ∈ OA,

in using Ruj −OA;
(2) For all rl ∈ Ruj −OA, we add the set of affected transactions at rl during the tl

interval [τ
tl

uj
rk

, τ
tl

uj
rk

+ δτ
tl

uj
rk

] to SPtj ;

(3) For ∀ t′ ∈ SPtj , we return to (1), while adding transactions to the initial SPtj , until
Rui −OA = ∅.

Using this depth-first search, we calculate the ratio using Equation (3).

Ratio3 =
1∣∣∣∀tl

uj
rι ∈ Tt,t+δt

∣∣∣ ∑
(∀tl

uj
rι ∈Tt,t+δτ )

∣∣SPtl

∣∣ (3)

In Figure 7, an illustration is provided of the spread for several types of charging
infrastructure. The arrows in Figure 7 indicate first second and third tear spread. For DC
fast charging, the spread involves first tear effects to all CPs, as the effect of one decision is
short, due to the short transaction connection, as well as the fact that Rtk ~Rui . We, thus,
expect Ratio3 to be low for DC fast charging. For private home charging, the spread takes,
as a maximum, the value of the number of EVs that share the home charging CPs. The
Ratio3 value is expected to be between 0 and 1. For semi-public charging, we also expect
this value to be between 0 and 1. For the mature public charging infrastructure, we expect
this value to be above 1 [104].

Figure 7. The path of the spread of effect for (a) public charging, (b) private charging, and (c) DC fast
charging (green dot indicates start of cascade).

4.2. Conclusions on Complex System Ratios

In this section, we have defined three ratios that help to identify the complexity of
behavior in the EV system as a social supply–demand system. The metrics presented
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here require simulation models (e.g., network simulation) to approach the exact values.
While we did not precisely determine the three values, we were able to compare public AC
charging with DC fast charging and private home charging. Our estimation showed that
the values for public AC charging significantly differ from the other two charging types.
Based on a qualitative assessment on the three ratios, we conclude that public CI can be
characterized as complex, given that, (i) in dense networks, there is a lot of competition for
scarce resources, (ii) likely queuing, and (iii) long cascades of perturbations.

Based on the variables that are present in the three equations, we can also esti-
mate whether the complexity of the system will change in the next two decades. For
instance, will an increased charging speed and battery of DC charging make the current
system redundant?

First, we see an increased battery size will lead to a reduced λj and tl
uj
rι , as well as

an increased transaction size, leading to lower values of ratio 2 and 3 for both DC fast
charging and AC public charging. For AC public charging, we do not expect the connection
time δtl

uj
rι to be directly affected by the battery size, since connection durations are related

to parking behavior [56]. For DC charging, on the other hand, the ratios may reach
values comparable to current petrol stations. Whether DC charging will grow towards
the dominant charging mode cannot be answered by these ratios alone [105], since market
developments play a role, as well.

Second, we expect the charging infrastructure to mature as the size of user population,
number of CPs, and number of transactions will increase. The set of ∀ txua , tyub

pairs will
increase exponentially as the system grows, but the effect is limited, as Ratio1 is normalized
over all pairs. We expect Rtk and Rui to increase as the density of the CPs increases. We
also expect

∣∣ Rua ∩ Rub

∣∣ to decrease as more users have nearby subsets of options. We

expect
∣∣∣Rtx ∪ Rty

∣∣∣ to increase as the set of alternatives grows. As such, we expect a slow
decrease of Ratio1 over time and the complexity to slightly decrease. On the other hand,
an increase of Rua and |U| may lead to an increase of Ratio3 and the spread of effects of
alternative decisions. In the end, this may add to the complexity of the behavior in the
system. We, therefore, expect that AC charging infrastructure (separate from its public DC
counterpart) will remain within the complex regime.

5. Analyzing Interactions and Performance of Complex Systems

Measuring the performance using system metrics of a complex system (CS) helps to
define, implement, and monitor the interventions that increase the effective deployment of
resources and evoke efficient use of the system [106–108]. A prerequisite is the availability
of at least transactional data that allows for the derivation of measures for both the resource
and user side. In various systems, transactional data are collected at the providers of
resources (e.g., health care providers or schools) or by individuals (e.g., stock exchange
records and GPS navigation systems).

The problem with measuring CS performance is that, typically, the metrics that matter
emerge from bottom-up interactions. The metrics measure the results of the interactions,
not the interactions themselves. This means that CS properties, such as feedback loops or
user intentions, that do not result in a transaction are limitedly captured by transactional
data. In an ideal world, one would have complete information of the system that is
not only the result of behavioral intentions but also the intentions themselves, as well
as the user experiences of the intentions and interactions between the intentions. For
instance, measuring the market cap of a stock, without the lending network or information
on buyers’ intentions, makes difficult, if not impossible, to predict a stock crash [109].
Therefore, to effectively intervene with the system, we also need understand the relation
between performance and the underlying behavior of the system.

In the next paragraphs, we describe systemic metrics, focusing on the interactions
between elements in the system and methods to model the system, in order to analyze
the interactions.
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5.1. Systemic Metrics for Charging Infrastructure

The EV system contains non-trivial dynamics, due to interactions between users and
charging points, such as a user-user interaction (competition or collaboration). In contrast
to system metrics that focus on performance, the systemic metrics quantify the interactions
between elements in the system. To analyze these interactions, we consider the system
from a complex networks perspective by using (i) network graphs from geospatial data
and (ii) bipartite graphs generated from charging data (mappings between supply and
demand) [95,96,110,111]. Typical metrics, from both the supply and demand side, can be
measured, and interactions can be inferred between elements (e.g., user-user) in the system.

First, using the geospatial information, a network G = (V, E) can be defined as
consisting of vertices (V) and edges (E), where V ⊆ R and edge e ∈ E is a connection
between two elements of V, defined according to specific thresholds. An edge eι,ι′ between
rι ∈ V and rι′ ∈ V, where ι 6= ι′, exists if a distance (dι,ι′) exists less than a threshold
(Γ). The distance (dι,ι′) may be defined by time, such as driving time, walking time, space
driving, walking distance, or distance as the crow flies. The edge (eι,ι′) represents that, for
rι, there is a relevant alternative (rι′) (relevant according, based on dι,ι′ < Γ). Varying the
dι,ι′ < Γ condition may help to adjust the network to the maturity of the infrastructure.

From this network, several metrics can be distilled that may help policy makers to
make rollout decisions. First, the degree distribution, i.e., the distribution of the number of
connections per CP, helps policy makers to reinforce the geospatial network at locations
where the number of alternatives is limited [102]. Second, the number and size of connected
components (sub-networks) within the large infrastructure may help to grow the EV system
as a network. For instance, a growing network is considered more robust if the size of the
largest component, relative to the total network, is kept constant [50,73,112]. This can be
achieved if policy makers select CP locations that interconnect the subnetworks.

The second network type is the bipartite graph. This graph is a triplet
Gb = { >, ⊥, E } = {R, U, T}, where each edge e ∈ E is a connection between one top (de-
mand) and bottom (supply) edge and derived from the set of transactions. Bipartite graphs
have been used extensively in computational ecology to model natural plant-pollinator sys-
tems [42,66]. The bipartite network has been used to solve allocation problems [96,113] and
model the effects of invasive species on current population and, in our study, the EV adop-
tion of specific EV user types [35,66]. This network has also been used to quantify the risk
of system collapse [42] and detect a system’s potentially unstable configurations [114,115].
At a detailed level, the detection of bicliques (fully connected subsets of upper and lower
elements) helps to reveal the effects of local competition for resources.

Simple metrics for bipartite graphs contain the average degree of a top or bottom
node k> or k⊥ or the density of the top δtop or bottom δbot of the bipartite graph [116,117].
As with the geospatial metrics, these metrics may help to strengthen the CP network at
specific locations. The redundancy coefficient captures the impact of removing node u on
its ⊥ connections, as defined by rd>(u) of node u [118]. This metric allows us to identify
spots in the network with an excess of supply. The average path length over the bipartite
components may help to identify regions where the effects of decision making of one EV
user, in comparison to others (similar to Ratio3), is high.

The bipartite network also allows us to project relations between elements of > or
⊥, based on existing edges. In the context of charging infrastructure, the >-projection
explains the relation between charging points, based on overlapping sets of EV users,
and the ⊥-projection describes the relation between EV users, based on the overlapping
sets of charging points. Both projections may be conditioned on time (τ)-specific aspects,
such as daytime or overnight charging. The projections may also be created as weighted
graphs by using the number of transactions for the weights. Contrary to the geospatial
network, the >-projection describes the actual used CPs as alternatives. This projection
may even include nodes that are not near each other, but still used by the same users (e.g.,
fast charging and CPs at shopping malls).
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Both projections may help to quantify emerging CS, such as competition or collab-
oration [119]. Metrics for the projections that are interesting for policy makers contain
the aforementioned graph metrics. Additionally, for >-projection (CP to CP network) the
following metrics are specifically interesting. For each component of the >-projection, the
eccentricity (the maximum shortest path between two nodes) gives an estimation of the
largest possible cascading failure in that component. For the ⊥-projection (user to user
network), clique detection and local density of a specific component may help to determine
which sections of the network to support with extra CPs.

5.2. Modeling Charging Infrastructure as Complex System

Complex systems (CSs) are notoriously difficult to accurately model [120,121]. The
challenge is often that there is no full behavioral information available in the system, since
behavior measurable at an aggregate level is typically developed bottom-up. In the case of
the EV system, we have a set of information that contains transactions of users at specific
outlets, which, by definition, contains only the results of successful connection attempts [7].
As such, the failed connection attempts, as part of the interactions, are, by definition, not
present in these data. The solution is to build models that generate simulated behavior that
can be validated with the available information [122].

A common method to model CS from a bottom-up approach is agent-based model-
ing (ABMs) [123–125]. In ABM, each agent (i.e., EV user) acts autonomously, according
to its individual assigned behavior [126]. The agent interacts with other agents within
an environment (e.g., a network of charging points), from which it adapts or learns its
behavior [126]. A concern of ABM use is that the outcomes of ABM simulations provide
qualitative answers to what-if questions, rather than a precise description of a system’s
future state [127,128]. A critical note is that the quality of simulation outcomes may be lim-
ited, without available validated (data based) descriptions of micro-level behavior [124,129].
Data driven calibration and validation of ABMs have been the subject of recent studies, as
more data has become available [129,130].

Bonabeau [124] summarizes five conditions for a system, for which it is useful to model
using ABMs. First, the interactions between agents are complex, nonlinear, discontinuous,
or discrete, as described in Section 3. We expect that the interactions between EV users, due
to CP occupation, results in nonlinear effects of adaptation, shifting preferences, cascades,
or strategic charging behavior, in order to avoid competition between users. Second,
Bonabeau states that the space dimension must be crucial for the agents’ behavior, which
corresponds with our abstraction of the EV system as a social supply–demand system
(described in Section 2). Third, ABMs are considered a suitable tool if the population of
agents is heterogeneous, as each individual agent has its specific behavior. In the EV system,
we see that, in both time and space, each agent has a specific charging behavior (i.e., arrival
time and CP preferences). Moreover, in a metropolitan area, with its diverse population,
we also expect different user types with differentiated behavior (e.g., residents, taxis, and
car sharing EVs). This presence of various types of users fits with the fourth condition
that the topology of the interactions is heterogeneous and complex. Finally, the ABMs are
specifically suitable to simulate systems in which complex behavior, such as learning and
adaptation, play a role. This is in line with our expectations of EV user behavior.

5.3. Proposed Model for Analyzing Charging Infrastructure as Complex System

Based on (i) our abstraction of charging infrastructure as a complex system and (ii) the
set of complex systems properties, we suggest including the following features in ABMs for
the EV system. First, we propose to include (i) the charging network of CPs, complemented
by set of relevant alternatives per CP; (ii) EV users with a feature set, as described in
2.3, with special attention to the battery size (Stj), charging speed (Scj), and charging
behavior, in terms of frequency (λj), quantity (φj), and quality (ρj). Second, we propose
to include rules based on preferences (Tuj ) (as shown in Figure 2), in order to allow EV
users to learn and adapt to interactions. These rules should include (a) the search for
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alternative CPs, in order to allow for demand side network effects; (b) strategic deviation
from arrival preferences to avoid competition; or (c) rules for collaboration with other
EV users. Additionally, the relation between the charging frequency (λj), battery size
(Stj), and charging speed (Scj) can be modeled, in order to allow to phase transitions in
simulations. Third, policy makers and additional EV uptake may be present in an ABM, as
special type of agent, in order to allow to reveal feedback loops and path dependency in
deployment strategies.

With this setup, we propose to simulate scenarios for different service rates, EV
user population compositions (in terms of number of users and different battery capacities
(hence, different charging behavior)), and different charging layouts. As part of the analysis,
we propose to measure competition and collaboration using systemic metrics, network
robustness, and non-linear scaling effects.

6. Discussion and Implications for Policy Makers and Research

Policy makers play a key role in the EV system, particularly in the deployment of
public charging infrastructure. Their degree of freedom is limited in choices, in regard
to when and where to deploy and what type of charging infrastructure to deploy, while
the effects of decisions are large. In this research, we have made a case that (i) charging
infrastructure can be abstracted as a social supply–demand system (SSDS), similar to other
systems; (ii) charging infrastructure is in a complex system, based on several ratios; and
(iii) complex systems may add to better understanding of the performance of charging
infrastructure. From this, we advocate that the use of complex systems and ABMs, as
a modelling tool, may support policy makers in making more robust solutions for the
anticipated exponential growth of EVs.

6.1. Implications for Policy Makers

Based on our research, we see the following four implications for policy makers. First,
based on the ratios derived from our general abstraction, we also see that the rate of
complexity depends on the type of charging deployed. Therefore, to reduce complexity,
policy makers need to develop a strategy that consists of a base public AC charging
infrastructure, combined with inner city semi-public and DC charging.

Second, policy makers may consider specific complex system properties, while
(i) deploying charging infrastructure or (ii) implementing interventions. Being conscious of
the learning effects and feedback loops of EV users may be key to tailored roll-out strategies
for local circumstances. For instance, based on charging data analysis, policy makers may
find patterns of EV user adaptation to local competition or collaboration. Robustness and
vulnerability are essential elements of complex systems; in the context of charging infras-
tructure, they relate to convenience of EV users [18]. It is known that the higher utilization
of a system leads to higher tension and criticality of the system. While policy makers tend
to optimize on performance, in terms of utilization of charging points, a balance between
performance and robustness may lead to a higher total system convenience.

Roll-out strategies specifically focused on decreasing the network vulnerability may
lead to an increased convenience for EV users, while having a marginal impact on efficiency.
While it is difficult to generalize learnings on path dependency, it is still an important
factor that policy makers should be aware of. Both in research, as well as in practice, there
seems to be two mutually exclusive paradigms for charging point technologies: AC Level 2
charging or DC fast charging. Deploying charging infrastructure, as a portfolio of several
technologies, may avoid certain paths becoming excluded.

Third, we have learned that systemic metrics (key performance metrics) do not fully
capture information on interactions. Based on our research, we suggest taking into account
systemic metrics for monitoring the system. Visualization of the charging network of
relevant alternatives may help to select locations to reinforce the network. The use of
bipartite projections may help to search for high competition areas.
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Fourth, policy makers should embrace the use of simulation models, in addition to
using data analysis. Until now, most deployment strategies have been based either on the
actual demand of EV users or expected demand at strategic locations near points of interests
(POIs). This approach has proven to be successful during the first phase of deployment;
however, for the system’s future growth, this approach may not be the most optimal. For
example, economies of scale may arise, due to network density or user interaction, and lead
to counter intuitive complex phenomena. Using agent-based models to test deployment
strategies or gain insight into complex interactions in the system may help policy makers
to improve deployment strategies.

6.2. Implications for Research

Based on our results, we can define two types of implications: (i) the application of
complex systems may be scientifically interesting to apply to the EV system; and (ii) the
results from the EV system may be relevant for researchers of other systems.

Regarding our first point, we believe it would be beneficial to put research questions
commonly found in complex systems theory, in the context of EV charging. An interesting
scientific challenge is to spot the early warning signals of upcoming regime changes in
charging behavior. In close relation to that, growth towards self-organized criticality of a
system, where the effect of perturbations follows the power law distribution, has gained
much attention in the scientific community. These phenomena are linked to systems that
follow rules of natural phenomena. It may be interesting to see in what sense the EV system
is led by rules that also apply to natural systems, rather than attribution performance to
user behavior.

The literature on modelling complex systems using ABM models or network models
may help advance our understanding of the EV system. ABMs rely on the quality of the
underlying behavioral model. Recent advances in ABM methodologies include the use
of behavioral data as a starting point. Data-driven rules for agents may be of particular
interest for EV research, since EV maturity tends to differ worldwide. Sharing the rules
themselves, rather than the underlying data, may avoid issues of privacy infringement, as
well. In addition, ABMs are difficult to reproduce; it would be beneficial to share ABM
code and documentation online (e.g., GitHub) for research purposes.

Regarding the complex network analysis of charging infrastructure, it would be
scientifically interesting to compare the resilience of the networks within metropolitan
areas worldwide, in relation to performance, user behavior, and perceived user convenience.
This may also help us to better understand path dependency, in the context of charging
infrastructure. Research in path dependency may create a set of generalized insights, based
upon the different contexts of metropolitan areas. These insights would provide a better
understanding of the complex tasks of deploying any new kind of infrastructure.

Finally, while this research focuses on the EV system as a social supply–demand
system, the insights that we have gained can be beneficial for other systems with a similar
rate of complexity. Many complex systems are difficult to model, due to limited availability
of detailed behavioral data. Yet, charging data, as well as additional data from surveys
or driving, are available for research to gain a better understanding of resource selection
behavior. The development of a set of behavioral models, based on detailed data, may not
only help EV research, but may also benefit other research.
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Glossary

Symbol Example Description
A Set of all pairs of transactions ta

x, tb
y

c_i ci Maximum transaction speed at ri
δτp δτp Duration of transactions p
E E ⊂ N2, lk ∈ E. Environment contains a set of locations lk
φj Demand rate user j max uptake speed
lι lι ∈ E Location of resource ι

λj Mean demand rate for user j in frequency time
Λt Local average λ used in Ratio2
Mj Memory of connections for user j
N Environment size
oι oι =

{
o1..oη

}
Set of outlets at rι

qι Quality of resources at access point ι

ρj Demand rate user j in terms of quality
R R = {r1, . . . , rn} Set of resource access points
Ruj Set of user preferred resource access points
R

uj

lk
Set of user preferred resource access points at the
given location

Rlk Set of local observable resource access points at
the location

rι rι = {lι, oι, cι, qι} Resource access point tuple
S S = {E, R, U, T} System
Scj Maximum resource uptake speed of user j
Stj Storage capacity user j
τ Time
T T = {t1 , . . . , tO } Transactions
Tuj T_j = {t1 , . . . , t_J } Set of transactions for user j
T

uj
ri Set of transactions for user j at resource access point ι

tp tp =
{

uj, oι, rι, τsp, δτp, Vp

}
Transaction tuple

τsp Start time of transaction p
U U = {u1 , . . . , um } Set of users

uj uj =
{

Stj, Scj, λj, φj, Tj, ρj

}
User tuple

Vp Transaction size

References
1. Wolbertus, R.; van den Hoed, R.; Kroesen, M.; Chorus, C. Charging infrastructure roll-out strategies for large scale in-troduction

of electric vehicles in urban areas: An agent-based simulation study. Transp. Res. Part A Policy Pract. 2021, 148, 262–285.
2. Funke, S.Á.; Gnann, T.; Plötz, P. Addressing the Different Needs for Charging Infrastructure: An Analysis of Some Criteria for

Charging Infrastructure Set-up. In E-Mobility in Europe; Filho, W.L., Kotter, R., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; pp. 73–90.

3. Helmus, J.R.; Lees, M.H.; Hoed, R.V.D. A data driven typology of electric vehicle user types and charging sessions. Transp. Res.
Part C Emerg. Technol. 2020, 115, 102637. [CrossRef]

4. Helmus, J.; Spoelstra, J.; Refa, N.; Lees, M.; Hoed, R.V.D. Assessment of public charging infrastructure push and pull rollout
strategies: The case of the Netherlands. Energy Policy 2018, 121, 35–47. [CrossRef]

5. Van Den Hoed, R.; Helmus, J.R.; De Vries, R.; Bardok, D. Data analysis on the public charge infrastructure in the city of Amsterdam.
In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition, Barcelona, Spain, 17–20 November 2013; pp. 1–10.

6. He, F.; Yin, Y.F.; Zhou, J. Deploying public charging stations for electric vehicles on urban road networks. Transp. Res. Part C
Emerg. Technol. 2015, 60, 227–240. [CrossRef]

7. Nie, Y.; Ghamami, M. A corridor-centric approach to planning electric vehicle charging infrastructure. Transp. Res. Part B Methodol.
2013, 57, 172–190. [CrossRef]

http://doi.org/10.1016/j.trc.2020.102637
http://doi.org/10.1016/j.enpol.2018.06.011
http://doi.org/10.1016/j.trc.2015.08.018
http://doi.org/10.1016/j.trb.2013.08.010


World Electr. Veh. J. 2022, 13, 44 23 of 27

8. Sathaye, N.; Kelley, S. An approach for the optimal planning of electric vehicle infrastructure for highway corridors. Transp. Res.
Part E Logist. Transp. Rev. 2013, 59, 15–33. [CrossRef]

9. Helmus, J.; Van Den Hoed, R. Key Performance Indicators of Charging Infrastructure. In Proceedings of the EVS 2016—29th
International Electric Vehicle Symposium, Montreal, QC, Canada, 19–22 June 2016; pp. 1–9.

10. Van den Hoed, R. E-Mobility: Getting Smarter with Data, 1st ed.; Amsterdam University of Applied Science: Amsterdam, The
Netherlands, 2020.

11. van der Steen, M.; van Schelven, R.M.; Van Deventer, D.P.; Van Twist, P.D.M.; Kotter, M.A. Policy strategies for an emergent
technology: Lessons from the analysis of EV-policy in 8 North-European countries. In Proceedings of the EVS28 International
Electric Vehicle Symposium and Exhibition, Goyang, Korea, 3–6 May 2015.

12. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
13. Andrenacci, N.; Ragona, R.; Valenti, G. A demand-side approach to the optimal deployment of electric vehicle charging stations

in metropolitan areas. Appl. Energy 2016, 182, 39–46. [CrossRef]
14. Mu, Y.; Wu, J.; Jenkins, N.; Jia, H.; Wang, C. A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles. Appl.

Energy 2014, 114, 456–465. [CrossRef]
15. Bae, S.; Kwasinski, A. Spatial and Temporal Model of Electric Vehicle Charging Demand. IEEE Trans. Smart Grid 2011, 3, 394–403.

[CrossRef]
16. Hill, G.; Blythe, P.; Suresh, V. How does the use of a continuously updating database allow for the analysis of a user’s changing

behaviour in electric vehicles? In Proceedings of the IET Road Transport Information and Control Conference and the ITS United
Kingdom Members’ Conference (RTIC 2010), Better Transport through Technology, London, UK, 25–27 May 2010.

17. Salah, F.; Ilg, J.P.; Flath, C.; Basse, H.; Van Dinther, C. Impact of electric vehicles on distribution substations: A Swiss case study.
Appl. Energy 2015, 137, 88–96. [CrossRef]

18. De Ridder, F.; D’Hulst, R.; Knapen, L.; Janssens, D. Applying an Activity based Model to Explore the Potential of Electrical
Vehicles in the Smart Grid. Procedia Comput. Sci. 2013, 19, 847–853. [CrossRef]

19. Geels, F.W. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from soci-ology
and institutional theory. Res. Policy 2004, 33, 897–920. [CrossRef]

20. Pathak, J.; Hunt, B.; Girvan, M.; Lu, Z.; Ott, E. Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A
Reservoir Computing Approach. Phys. Rev. Lett. 2018, 120, 024102. [CrossRef]

21. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1992.
22. Ladyman, J.; Lambert, J.; Wiesner, K. What is a complex system? Eur. J. Philos. Sci. 2013, 3, 33–67. [CrossRef]
23. Apesteguia, J.; Maier-Rigaud, F.P. The Role of Rivalry public goods versus common-pool resources. J. Conflict Resolut. 2006,

50, 646–663. [CrossRef]
24. Andersson, D.; Bratsberg, S.; Ringsmuth, A.K.; de Wijn, A.S. Dynamics of collective action to conserve a large com-mon-pool

resource. Sci. Rep. 2021, 11, 9208. [CrossRef]
25. Gollwitzer, L.; Ockwell, D.; Muok, B.; Ely, A.; Ahlborg, H. Rethinking the sustainability and institutional governance of electricity

access and mini-grids: Electricity as a common pool resource. Energy Res. Soc. Sci. 2018, 39, 152–161. [CrossRef]
26. Pitt, J.; Diaconescu, A. The Algorithmic Governance of Common-Pool Resources. Available online: https://wiki.p2pfoundation.

net/images/AlgGov-ID3.pdf (accessed on 9 January 2022).
27. Künneke, R.; Finger, M. The governance of infrastructures as common pool resources in Bloomington. In Elinor Ostrom and the

Blomington School of Political Economy; Lexington Books: Minneapolis, MN, USA, 2018.
28. Dignum, E.; Boterman, W.; Flache, A.; Lees, M.H. Mechanisms for increased school segregation relative to residential segregation:

A model-based analysis. Comput. Environ. Urban Syst. 2022, 93, 101772. [CrossRef]
29. Bar-Yam, Y. Improving the Effectiveness of Health Care and Public Health: A Multiscale Complex Systems Analysis. Am. J. Public

Health 2006, 96, 459–466. [CrossRef]
30. Wilsford, D. Path Dependency, or Why History Makes It Difficult but Not Impossible to Reform Health Care Systems in a Big

Way. J. Public Policy 1994, 14, 251–283. [CrossRef]
31. Ottens, M.; Franssen, M.; Kroes, P.; Van De Poel, I. Modelling infrastructures as socio-technical systems. Int. J. Crit. Infrastruct.

2006, 2, 133. [CrossRef]
32. Landegren, F. Critical Infrastructures as Socio-Technical Systems Application to Electricity Distribution. Licentiate Thesis, Lund

University, Lund, Sweden, 2014.
33. Kjølle, G.H.; Utne, I.B.; Gjerde, O. Risk analysis of critical infrastructures emphasizing electricity supply and interde-pendencies.

Reliab. Eng. Syst. Saf. 2012, 105, 80–89. [CrossRef]
34. Sarabi, S.; Davigny, A.; Riffonneau, Y.; Robyns, B. V2G electric vehicle charging scheduling for railway station parking lots

based on binary linear programming. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven,
Belgium, 4–8 April 2016; pp. 1–6.

35. Williams, R.J. Biology, Methodology or Chance? The Degree Distributions of Bipartite Ecological Networks. PLoS ONE 2011,
6, e17645. [CrossRef]

36. Dobson, I.; Carreras, B.A.; Lynch, V.E.; Newman, D.E. Complex systems analysis of series of blackouts: Cascading failure, critical
points, and self-organization. Chaos 2007, 17, 26103. [CrossRef]

http://doi.org/10.1016/j.tre.2013.08.003
http://doi.org/10.1109/MCI.2006.329691
http://doi.org/10.1016/j.apenergy.2016.07.137
http://doi.org/10.1016/j.apenergy.2013.10.006
http://doi.org/10.1109/TSG.2011.2159278
http://doi.org/10.1016/j.apenergy.2014.09.091
http://doi.org/10.1016/j.procs.2013.06.113
http://doi.org/10.1016/j.respol.2004.01.015
http://doi.org/10.1103/PhysRevLett.120.024102
http://doi.org/10.1007/s13194-012-0056-8
http://doi.org/10.1177/0022002706290433
http://doi.org/10.1038/s41598-021-87109-x
http://doi.org/10.1016/j.erss.2017.10.033
https://wiki.p2pfoundation.net/images/AlgGov-ID3.pdf
https://wiki.p2pfoundation.net/images/AlgGov-ID3.pdf
http://doi.org/10.1016/j.compenvurbsys.2022.101772
http://doi.org/10.2105/AJPH.2005.064444
http://doi.org/10.1017/S0143814X00007285
http://doi.org/10.1504/IJCIS.2006.009433
http://doi.org/10.1016/j.ress.2012.02.006
http://doi.org/10.1371/journal.pone.0017645
http://doi.org/10.1063/1.2737822


World Electr. Veh. J. 2022, 13, 44 24 of 27

37. Wolbertus, R.; Gerzon, B. Improving Electric Vehicle Charging Station Efficiency through Pricing. J. Adv. Transp. 2018,
2018, 4831951. [CrossRef]

38. Saunders, F.P. The promise of common pool resource theory and the reality of commons projects. Int. J. Commons 2014, 8, 636–656.
[CrossRef]

39. Helmus, J.R.; Vogel, I.; Van Den Hoed, R. Exploring Patterns of Social Charging Behavior between EV Users. In Proceeding of the
33rd Electric Vehicle Symposium (EVS33), Portland, Oregon, 14–17 June 2020.

40. Kannampallil, T.G.; Schauer, G.F.; Cohen, T.; Patel, V.L. Considering complexity in healthcare systems. J. Biomed. Informatics 2011,
44, 943–947. [CrossRef]

41. Scholz, M.; Alves Furtado, B.; Sakowski, P.; Tóvolli, M. Modeling Complex Systems for Public Policies; IPEA: Brasilia, Brazi, 2011;
Volume 46.

42. Straka, M.J.; Caldarelli, G.; Squartini, T.; Saracco, F. From Ecology to Finance (and Back?): Recent Advancements in the Analysis
of Bipartite Networks. arXiv 2017, arXiv:1710.10143.

43. Paina, L.; Peters, D.H. Understanding pathways for scaling up health services through the lens of complex adaptive systems.
Health Policy Plan. 2011, 27, 365–373. [CrossRef]

44. Bellouquid, A.; De Angelis, E.; Fermo, L. Towards the modeling of vehicular traffic as a complex system: A kinetic theory
approach. Math. Model. Methods Appl. Sci. 2012, 22, 1140003. [CrossRef]

45. Schneider, M.; Somers, M. Organizations as complex adaptive systems: Implications of Complexity Theory for leadership research.
Leadersh. Q. 2006, 17, 351–365. [CrossRef]

46. Anderies, J.M.; Katti, M.; Shochat, E. Living in the city: Resource availability, predation, and bird population dynamics in urban
areas. J. Theor. Biol. 2007, 247, 36–49. [CrossRef] [PubMed]

47. Li, S.; Tong, L.; Xing, J.; Zhou, Y. The Market for Electric Vehicles: Indirect Network Effects and Policy Design. J. Assoc. Environ.
Resour. Econ. 2017, 4, 89–133. [CrossRef]

48. Maase, S.; Dilrosun, X.; Kooi, M.; Hoed, R.V.D. Performance of Electric Vehicle Charging Infrastructure: Development of an
Assessment Platform Based on Charging Data. World Electr. Veh. J. 2018, 9, 25. [CrossRef]

49. Wolbertus, R.; Hoed, R.V.D.; Maase, S. Benchmarking Charging Infrastructure Utilization. World Electr. Veh. J. 2016, 8, 754.
[CrossRef]

50. Kontou, E.; Liu, C.; Xie, F.; Wu, X.; Lin, Z. Understanding the linkage between electric vehicle charging network coverage and
charging opportunity using GPS travel data. Transp. Res. Part C Emerg. Technol. 2018, 98, 141. [CrossRef]

51. Lane, B.W. From early adopters to early quitters. Nat. Energy 2021, 6, 458–459. [CrossRef]
52. Okunuki, K.; Sekuzu, I. Studies on the oxidase system of escherichia coli with special reference to inhibition of succinic oxidase

system. J. Biochem. 1955, 42, 397–409. [CrossRef]
53. Poisot, T.; Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network

properties. PeerJ 2014, 2, e251. [CrossRef]
54. Saavedra, S.; Reed-Tsochas, F.; Uzzi, B. A simple model of bipartite cooperation for ecological and organizational net-works.

Nature 2009, 457, 463–466. [CrossRef]
55. Xydas, E.; Marmaras, C.; Cipcigan, L.M. A multi-agent based scheduling algorithm for adaptive electric vehicles charging. Appl.

Energy 2016, 177, 354–365. [CrossRef]
56. Wolbertus, R.; Kroesen, M.; Hoed, R.V.D.; Chorus, C. Fully charged: An empirical study into the factors that influence connection

times at EV-charging stations. Energy Policy 2018, 123, 1–7. [CrossRef]
57. Guirao, B.; Molina-Sánchez, R.; Ortuño, A.; Gálvez-Pérez, D. Integration of Free Floating Car Sharing Systems in Rail Stations: A

Web Based Data Analysis. Futur. Transp. 2021, 1, 4. [CrossRef]
58. Helbing, D.; Buzna, L.; Johansson, A.; Werner, T. Self-organized pedestrian crowd dynamics: Experiments, simulations, and

design solutions. Transp. Sci. 2005, 39, 1–24. [CrossRef]
59. Helbing, D.; Yu, W. The outbreak of cooperation among success-driven individuals under noisy conditions. Proc. Natl. Acad. Sci.

USA 2009, 106, 3680–3685. [CrossRef] [PubMed]
60. Bellomo, N.; Soler, J. On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Model. Methods

Appl. Sci. 2012, 22, 1140006. [CrossRef]
61. Nagel, K.; Paczuski, M. Emergent traffic jams. Phys. Rev. E 1995, 51, 2909–2918. [CrossRef]
62. Marschler, C.; Sieber, J.; Berkemer, R.; Kawamoto, A.; Starke, J. Implicit Methods for Equation-Free Analysis: Convergence Results

and Analysis of Emergent Waves in Microscopic Traffic Models. SIAM J. Appl. Dyn. Syst. 2014, 13, 1202–1238. [CrossRef]
63. Lewis, T.G.; Mackin, T.J.; Darken, R. Critical Infrastructure as Complex Emergent Systems. Int. J. Cyber Warf. Terror. 2011, 1, 1–12.

[CrossRef]
64. Rohr, R.P.; Saavedra, S.; Bascompte, J. On the structural stability of mutualistic systems. Science 2014, 345, 1253497. [CrossRef]
65. Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [CrossRef]
66. Saavedra, S.; Stouffer, D.B.; Uzzi, B.; Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction.

Nature 2011, 478, 233–235. [CrossRef] [PubMed]
67. Parandehgheibi, M.; Modiano, E. Robustness of Bidirectional Interdependent Networks: Analysis and Design. arXiv 2016,

arXiv:1605.01262.

http://doi.org/10.1155/2018/4831951
http://doi.org/10.18352/ijc.477
http://doi.org/10.1016/j.jbi.2011.06.006
http://doi.org/10.1093/heapol/czr054
http://doi.org/10.1142/S0218202511400033
http://doi.org/10.1016/j.leaqua.2006.04.006
http://doi.org/10.1016/j.jtbi.2007.01.030
http://www.ncbi.nlm.nih.gov/pubmed/17382966
http://doi.org/10.1086/689702
http://doi.org/10.3390/wevj9020025
http://doi.org/10.3390/wevj8040754
http://doi.org/10.1016/j.trc.2018.11.008
http://doi.org/10.1038/s41560-021-00836-3
http://doi.org/10.1093/oxfordjournals.jbchem.a126542
http://doi.org/10.7717/peerj.251
http://doi.org/10.1038/nature07532
http://doi.org/10.1016/j.apenergy.2016.05.034
http://doi.org/10.1016/j.enpol.2018.08.030
http://doi.org/10.3390/futuretransp1010004
http://doi.org/10.1287/trsc.1040.0108
http://doi.org/10.1073/pnas.0811503106
http://www.ncbi.nlm.nih.gov/pubmed/19237576
http://doi.org/10.1142/S0218202511400069
http://doi.org/10.1103/PhysRevE.51.2909
http://doi.org/10.1137/130913961
http://doi.org/10.4018/ijcwt.2011010101
http://doi.org/10.1126/science.1253497
http://doi.org/10.1103/RevModPhys.74.47
http://doi.org/10.1038/nature10433
http://www.ncbi.nlm.nih.gov/pubmed/21918515


World Electr. Veh. J. 2022, 13, 44 25 of 27

68. Koç, Y.; Warnier, M.; Kooij, R.E.; Brazier, F.M.; Warnier, M. A robustness metric for cascading failures by targeted attacks in power
networks. In Proceedings of the 2013 10th IEEE International Conference on Networking, Sensing and Control (ICNSC), Paris,
France, 10–12 April 2013; pp. 48–53. [CrossRef]

69. Davis, J.T.; Perra, N.; Zhang, Q.; Moreno, Y.; Vespignani, A. Phase transitions in information spreading on structured populations.
Nat. Phys. 2020, 16, 590–596. [CrossRef]

70. Fronczak, P.; Fronczak, A.; Hołyst, J.A. Self-organized criticality and coevolution of network structure and dynamics. Phys. Rev. E
2006, 73, 046117. [CrossRef] [PubMed]

71. Helmus, J.R.; Wachlin, S.; Vermeulen, I.; Lees, M.H. SEVA: A Data driven model of Electric Vehicle Charging Behavior. arXiv 2019,
arXiv:1904.08748.

72. Shalizi, C.R.; Shalizi, K.L.; Haslinger, R. Quantifying Self-Organization with Optimal Predictors. Phys. Rev. Lett. 2004, 93, 118701.
[CrossRef]

73. Schelling, T.C. Dynamic models of segregation. J. Math. Sociol. 1971, 1, 143–186. [CrossRef]
74. Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–384.

[CrossRef]
75. Carreras, B.; Newman, D.E.; Dobson, I.; Poole, A.B. Evidence for Self-Organized Criticality in a Time Series of Electric Power

System Blackouts. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 1733–1740. [CrossRef]
76. McAteer, R.T.J.; Aschwanden, M.J.; Dimitropoulou, M.; Georgoulis, M.K.; Pruessner, G.; Morales, L.; Ireland, J.; Abramenko, V. 25

Years of Self-organized Criticality: Numerical Detection Methods. Space Sci. Rev. 2015, 198, 217–266. [CrossRef]
77. Bettencourt, L.M.; Lobo, J.; Helbing, D.; Kühnert, C.; West, G.B. Growth, innovation, scaling, and the pace of life in cities. Proc.

Natl. Acad. Sci. USA 2007, 104, 7301–7306. [CrossRef] [PubMed]
78. Bauer, G.S.; Phadke, A.; Greenblatt, J.B.; Rajagopal, D. Electrifying urban ridesourcing fleets at no added cost through efficient

use of charging infrastructure. Transp. Res. Part C Emerg. Technol. 2019, 105, 385–404. [CrossRef]
79. Klitkou, A.; Bolwig, S.; Hansen, T.; Wessberg, N. The role of lock-in mechanisms in transition processes: The case of energy for

road transport. Environ. Innov. Soc. Transit. 2015, 16, 22–37. [CrossRef]
80. Almaghrebi, A.; Shom, S.; Al Juheshi, F.; James, K.; Alahmad, M. Analysis of User Charging Behavior at Public Charging Stations.

In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Novi, MI, USA, 19–21 June 2019.
[CrossRef]

81. Har-Shemesh, O.; Quax, R.; Hoekstra, A.G.; Sloot, P.M.A. Information geometric analysis of phase transitions in complex patterns:
The case of the Gray-Scott reaction–diffusion model. J. Stat. Mech. Theory Exp. 2016, 2016, 43301. [CrossRef]

82. Avetisov, V.; Gorsky, A.; Maslov, S.; Nechaev, S.; Valba, O. Phase transitions in social networks inspired by the Schelling model.
Phys. Rev. E 2018, 98, 032308. [CrossRef]

83. Zhang, X.; Wang, K.; Hao, Y.; Fan, J.-L.; Wei, Y.-M. The impact of government policy on preference for NEVs: The evidence from
China. Energy Policy 2013, 61, 382–393. [CrossRef]

84. Wang, W.; Chen, Y.; Huang, J. Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive
system. Proc. Natl. Acad. Sci. USA 2009, 106, 8423–8428. [CrossRef]

85. Pathak, J.; Lu, Z.; Hunt, B.R.; Girvan, M.; Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov
exponents from data. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 121102. [CrossRef]

86. Vermeulen, I.; Helmus, J.R.; Lees, M.; Hoed, R.V.D. Simulation of Future Electric Vehicle Charging Behavior—Effects of Transition
from PHEV to FEV. World Electr. Veh. J. 2019, 10, 42. [CrossRef]

87. Franke, T.; Krems, J.F. Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traffic Psychol. Behav. 2013,
21, 75–89. [CrossRef]

88. Conte, M.; Alessandrini, F.; Pasquali, M.; Rossi, E.; Sglavo, V.; Vellucci, F. Experimental behaviour of Li-ion and supercapacitors
cells for HEVs under standardized and tailored-life cycle testing. World Electr. Veh. J. 2015, 7, 59–70. [CrossRef]

89. Botsfordm, C.W.; Edwards, A. An Integrated Global Philosophy of EV Charging. World Electr. Veh. J. 2016, 8, 495. [CrossRef]
90. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]

[PubMed]
91. Hartmanis, J.; Stearns, R.E. On the Computational Complexity of Algorithms. Trans. Am. Math. Soc. 1965, 117, 285–306. [CrossRef]
92. Lindgren, K.; Nordahl, M.G. Complexity measures and cellular automata. Complex Syst. 1988, 2, 409–440.
93. Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; van der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B

Stat. Methodol. 2002, 64, 583–639. [CrossRef]
94. Gell-Mann, M. What is complexity?Remarks on simplicity and complexity by the Nobel Prize-winning author ofThe Quark and

the Jaguar. Complexity 1995, 1, 16–19. [CrossRef]
95. Latapy, M.; Magnien, C.; Del Vecchio, N. Basic notions for the analysis of large two-mode networks. Soc. Netw. 2008, 30, 31–48.

[CrossRef]
96. Khodamoradi, K.; Krishnamurt, R.; Rafiey, A.; Stamoulis, G. PTAS for Ordered Instances of Resource Allocation Problems

with Restrictions on Inclusions. In Proceedings of the IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2013), Guwahati, India, 10–14 December 2013; pp. 1–23.

97. Aveklouris, A.; Nakahira, Y.; Vlasiou, M.; Zwart, B. Electric vehicle charging: A queueing approach. Perform. Eval. Rev. 2017,
45, 33–35. [CrossRef]

http://doi.org/10.1109/icnsc.2013.6548709
http://doi.org/10.1038/s41567-020-0810-3
http://doi.org/10.1103/PhysRevE.73.046117
http://www.ncbi.nlm.nih.gov/pubmed/16711888
http://doi.org/10.1103/PhysRevLett.93.118701
http://doi.org/10.1080/0022250X.1971.9989794
http://doi.org/10.1103/PhysRevLett.59.381
http://doi.org/10.1109/TCSI.2004.834513
http://doi.org/10.1007/s11214-015-0158-7
http://doi.org/10.1073/pnas.0610172104
http://www.ncbi.nlm.nih.gov/pubmed/17438298
http://doi.org/10.1016/j.trc.2019.05.041
http://doi.org/10.1016/j.eist.2015.07.005
http://doi.org/10.1109/itec.2019.8790534
http://doi.org/10.1088/1742-5468/2016/04/043301
http://doi.org/10.1103/PhysRevE.98.032308
http://doi.org/10.1016/j.enpol.2013.06.114
http://doi.org/10.1073/pnas.0811782106
http://doi.org/10.1063/1.5010300
http://doi.org/10.3390/wevj10020042
http://doi.org/10.1016/j.trf.2013.09.002
http://doi.org/10.3390/wevj7010059
http://doi.org/10.3390/wevj8020495
http://doi.org/10.1073/pnas.88.6.2297
http://www.ncbi.nlm.nih.gov/pubmed/11607165
http://doi.org/10.1090/S0002-9947-1965-0170805-7
http://doi.org/10.1111/1467-9868.00353
http://doi.org/10.1002/cplx.6130010105
http://doi.org/10.1016/j.socnet.2007.04.006
http://doi.org/10.1145/3152042.3152054


World Electr. Veh. J. 2022, 13, 44 26 of 27

98. Liang, H.; Sharma, I.; Zhuang, W.; Bhattacharya, K. Plug-in electric vehicle charging demand estimation based on queueing
network analysis. In Proceedings of the 2014 IEEE General Meeting Conference & Exposition, National Harbor, MD, USA, 27–31
July 2014.

99. Said, D.; Cherkaoui, S.; Khoukhi, L. Queuing model for EVs charging at public supply stations. In Proceedings of the 2013 9th
International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 65–70.
[CrossRef]

100. Borge-Holthoefer, J.; Baños, R.A.; González-Bailón, S.; Moreno, Y. Cascading behaviour in complex socio-technical networks. J.
Complex Netw. 2013, 1, 3–24. [CrossRef]

101. Wu, Z.-X.; Peng, G.; Wang, W.-X.; Chan, S.; Wong, W.M.E. Cascading failure spreading on weighted heterogeneous networks. J.
Stat. Mech. Theory Exp. 2008, 2008, P05013. [CrossRef]

102. Korkali, M.; Veneman, J.G.; Tivnan, B.F.; Bagrow, J.P.; Hines, P.D.H. Reducing Cascading Failure Risk by Increasing Infrastructure
Network Interdependence. Sci. Rep. 2017, 7, 44499. [CrossRef] [PubMed]

103. Soltan, S.; Mazauric, D.; Zussman, G. Cascading failures in power grids. In Proceedings of the 5th International Conference on
Future Energy Systems, Cambridge, UK, 11–13 June 2014; pp. 195–206. [CrossRef]

104. Glombek, M.; Helmus, J.R.; Lees, M.; Van Den Hoes, R.; Quax, R. Vulnerability of Charging Infrastructure. A Novel Approach for
Improving Charging Station Deployment. In Proceedings of the 2018 Transportation Research Arena, Vienna, Austria, 16–19
April 2018.

105. Morrissey, P.; Weldon, P.; O’Mahony, M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle
charging behaviour. Energy Policy 2016, 89, 257–270. [CrossRef]

106. Dacid, P. Key Performance Indicators (KPI): Developing, Implementing, and Using Winning KPIs; Wiley: Hoboken, NJ, USA, 2010.
107. Candiello, A.; Cortesi, A. KPI-Supported PDCA Model for Innovation Policy Management in Local Government. In Proceedings

of the International Conference on Electronic Government, Delft, The Netherlands, 28 August–2 September 2011; pp. 320–331.
[CrossRef]

108. Hutcherson, R. Organizational Optimization; Author House: Bloomington, IN, USA, 2014.
109. Quax, R.; Kandhai, D.; Sloot, P.M.A. Information dissipation as an early-warning signal for the Lehman Brothers collapse in

financial time series. Sci. Rep. 2013, 3, srep01898. [CrossRef] [PubMed]
110. Varshney, L.R. Fundamental Limits of Data Analytics in Sociotechnical Systems. Front. ICT 2016, 3, 2. [CrossRef]
111. Strategisch plan laadinfrastructuur gemeente Utrecht tot 2030. Available online: https://api1.ibabs.eu/publicdownload.aspx?

site=utrecht&id=100507727 (accessed on 9 January 2022).
112. Albert, R.; Jeong, H.; Barabási, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 378–382. [CrossRef]
113. Irani, S.; Leung, V. Scheduling with Conflicts on Bipartite and Interval Graphs. J. Sched. 2003, 6, 287–307. [CrossRef]
114. Manea, M. Models of Bilateral Trade in Networks. In Oxford Handbook of the Economics of Networks; Oxford University Press: New

York, NY, USA, 2016; pp. 697–732. [CrossRef]
115. Dueñas, M.; Fagiolo, G. Modeling the International-Trade Network: A gravity approach. J. Econ. Interact. Co-ord. 2013, 8, 155–178.

[CrossRef]
116. Tarissan, F. Comparing Overlapping Properties of Real Bipartite Networks. In Proceedings of the ISCS 2014: Interdisciplinary

Symposium on Complex Systems, Florence, Italy, 15–18 September 2014; pp. 309–317. [CrossRef]
117. Available online: https://github.com/biometry/bipartite (accessed on 9 January 2022).
118. Guillaume, J.-L.; Latapy, M. Bipartite structure of all complex networks. Inf. Process. Lett. 2004, 90, 215–221. [CrossRef]
119. Qiao, J.; Meng, Y.-Y.; Chen, H.; Huang, H.-Q.; Li, G.-Y. Modeling one-mode projection of bipartite networks by tagging vertex

information. Phys. A Stat. Mech. Appl. 2016, 457, 270–279. [CrossRef]
120. Sayama, H.; Pestov, I.; Schmidt, J.; Bush, B.J.; Wong, C.; Yamanoi, J.; Gross, T. Modeling complex systems with adaptive networks.

Comput. Math. Appl. 2013, 65, 1645–1664. [CrossRef]
121. Langton, C.G. Computation at the edge of chaos: Phase transitions and emergent computation. Phys. D Nonlinear Phenom. 1990,

42, 12–37. [CrossRef]
122. Bert, F.E.; Rovere, S.L.; Macal, C.M.; North, M.J.; Podestá, G. Lessons from a comprehensive validation of an agent based-model:

The experience of the Pampas Model of Argentinean agricultural systems. Ecol. Model. 2014, 273, 284–298. [CrossRef]
123. Gilbert, N.; de Marchi, S.; Page, S.E. Agent-Based Models. Annu. Rev. Polit. Sci. 2014, 17, 1–20.
124. Bonabeau, E. Agent-based modeling: Methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 2002,

99, 7280–7287. [CrossRef]
125. Axelrod, R. Advancing the art of simulation in the social sciences—SSP. J. Jpn. Int. Econ. 2003, 12, 16–22.
126. Macal, C.M.; North, M.J. Agent-based modeling and simulation. In Proceedings of the 2009 Winter Simulation Conference (WSC),

Austin, TX, USA, 13–16 December 2009; pp. 86–98.
127. Schouten, M.; Verwaart, T.; Heijman, W. Comparing two sensitivity analysis approaches for two scenarios with a spatially explicit

rural agent-based model. Environ. Model. Softw. 2014, 54, 196–210. [CrossRef]
128. Elliott, E.; Kiel, L.D. A complex systems approach for developing public policy toward terrorism: An agent-based ap-proach.

Chaos Solitons Fractals 2004, 20, 63–68. [CrossRef]

http://doi.org/10.1109/iwcmc.2013.6583536
http://doi.org/10.1093/comnet/cnt006
http://doi.org/10.1088/1742-5468/2008/05/P05013
http://doi.org/10.1038/srep44499
http://www.ncbi.nlm.nih.gov/pubmed/28317835
http://doi.org/10.1145/2602044.2602066
http://doi.org/10.1016/j.enpol.2015.12.001
http://doi.org/10.1007/978-3-642-22878-0_27
http://doi.org/10.1038/srep01898
http://www.ncbi.nlm.nih.gov/pubmed/23719567
http://doi.org/10.3389/fict.2016.00002
https://api1.ibabs.eu/publicdownload.aspx?site=utrecht&id=100507727
https://api1.ibabs.eu/publicdownload.aspx?site=utrecht&id=100507727
http://doi.org/10.1038/35019019
http://doi.org/10.1023/A:1022908509269
http://doi.org/10.1093/oxfordhb/9780199948277.013.15
http://doi.org/10.1007/s11403-013-0108-y
http://doi.org/10.1007/978-3-319-10759-2_32
https://github.com/biometry/bipartite
http://doi.org/10.1016/j.ipl.2004.03.007
http://doi.org/10.1016/j.physa.2016.03.106
http://doi.org/10.1016/j.camwa.2012.12.005
http://doi.org/10.1016/0167-2789(90)90064-V
http://doi.org/10.1016/j.ecolmodel.2013.11.024
http://doi.org/10.1073/pnas.082080899
http://doi.org/10.1016/j.envsoft.2014.01.003
http://doi.org/10.1016/S0960-0779(03)00428-4


World Electr. Veh. J. 2022, 13, 44 27 of 27

129. Zhang, H.; Vorobeychik, Y.; Letchford, J.; Lakkaraju, K. Data-driven agent-based modeling, with application to rooftop solar
adoption. Auton. Agents Multi-Agent Syst. 2016, 30, 1023–1049. [CrossRef]

130. Jensen, T.; Chappin, J.L. Automating agent-based modeling: Data-driven generation and application of innovation diffusion
models. Environ. Model. Softw. 2017, 92, 261–268. [CrossRef]

http://doi.org/10.1007/s10458-016-9326-8
http://doi.org/10.1016/j.envsoft.2017.02.018

	Introduction 
	General Abstraction of Infrastructures as Systems of Supply and Demand 
	Environment 
	Resource Access Points 
	Users 
	Transactions 
	Research Methodologies for Charging Infrastructure as Social Supply–Demand System 

	Charging Infrastructure as a Complex System 
	Feedback Loops 
	Learning and Adaptation 
	Emergence 
	Network Formation and Resilience 
	Self-Organisation 
	Non-Linearity 
	Path Depencency 
	Phase Transitions 

	Analyzing the Complexity of the EV System 
	How Complex Is the EV System? 
	Ratio 1: Necessity of Sharing Resources 
	Ratio 2: Probabilities of Queuing 
	Ratio 3: Impact of Transactions on Others 

	Conclusions on Complex System Ratios 

	Analyzing Interactions and Performance of Complex Systems 
	Systemic Metrics for Charging Infrastructure 
	Modeling Charging Infrastructure as Complex System 
	Proposed Model for Analyzing Charging Infrastructure as Complex System 

	Discussion and Implications for Policy Makers and Research 
	Implications for Policy Makers 
	Implications for Research 

	References

