
Appendix I - Energy Storage Label

A description of the energy storage label and a collection of the storage labels developed to date.

The label components are described in detail in Section 3.1 and 3.2. To summarize, these include:

- Technology Name: The name typically given to this technology, as well as the broad category
 this type of storage falls under (i.e. mechanical, electrochemical, electrical, magnetic, thermal
 or gas storage).
- 2) **Description:** A general description of the technology, providing fundamental operating principles and typical applications.
- 3) **Key Characteristics:** Displays the minimum and maximum characteristics in key areas which define the suitability of a technology for particular applications. Key characteristics include **Power Rating Charge, Power Rating Discharge, Energy Storage Capacity, Energy Density, Response Time Charge, Response Time Discharge and Costs (in terms of power rating and energy capacity).**
- 4) **Energy Carrier Type:** The energy carrier stored by and released from the storage system. Energy can be stored in many different forms (i.e. mechanical, potential, chemical, electrical, thermal, etc.) but is typically released from the storage system in the form of electricity, heat, gas or a liquid fuel.
- 5) **Suitable Applications:** Suitability of technology for typical energy storage applications.

A green cell indicates a technology is highly suitable

An orange cell indicates a technology is moderately suitable or requires further development in this region

A grey cell indicates no suitability.

- 6) **Sector for Use:** The typical sector of the energy network where this technology is employed, often related to power rating. Different sector include:
 - Supply (100 MW 100 GW)
 - Transmission and distribution (10 kW 100 MW)
 - Consumer / Demand (<10 kW)
 - Renewable energy integration (kW MW)
- 7) Expert Properties: More detailed technology characteristics, which may prove important but less fundamentally defining as the Key Characteristics. These include Max Operational Time, Ramp Up/Down Speed, Cost Projection, Self-discharge Rate, Roundtrip Efficiency, Lifetime and Storage Time.
- 8) **Maturity of Technology:** A ranking of how far developed this technology is. From this, many conclusions can be inferred about the technology's cost and reliability, as well as potential for future developments.
- 9) **Reliability:** A ranking of the technology's annual **Downtime** and the **Reliability**, which is a measure of security of supply (i.e. which percentage of time will this technology be accessible throughout a year).
- 10) Safety of System: A description of notable operating risks associated with this technology.
- 11) Sustainability: The environmental friendliness of this technology, in terms of Recyclability, Environmental Impact and Resource Depletion.
- 12) **Final Remarks:** Additional remarks, such as important advantages and limitations of this technology, ideal applications and so on.
- 13) Sources used for this label

_				
	 W	•	\mathbf{a}	\sim 1
	7 A 7 A		_	
			•	- 1

Technology name	Mechanical Storage - Flywheel
Description	Flywheels store electrical energy by speeding up inertial masses (rotors).
	Rotating masses typically rest on low-friction bearings in evacuated chambers.
	Energy is transferred in and out usng a motor-gnerator that spins a shaft
	connected to the rotor.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	0.01	MW	2.00	MW
Charge power	100.00	kW	2.00	MW
Energy storage capacity	1,800.00	kJ	25.00	kWh
Energy density	=	MWh/m3	-	MWh/m3
Response time discharge	0.06	S	0.06	S
Response time charge	0.06	S	0.06	S
Costs power	100.00	€/kW	3,020.00	€/kW
Costs energy	720.00	€/kWh	6,650.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	5.00	S	15.00	min
Ramp up speed	#N/A	kW/min	#N/A	MW/min
Ramp down speed	#N/A	MW/min	#N/A	MW/min
Cost projection (2020)		€/Wh		€/kWh
Cost projection (2020)		€/Wh		€/kWh
Self-discharge rate	3.00	%/hr	40.00	%/hr
Roundtrip efficiency	70.00	%	90.00	%
Lifetime	20,000.00	Cycles	10,000,000.00	Cycles
Lifetime	15.00	Years	25.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology		Research	Demonstration	Deployed	Commercial
Reliability		Range low	Unit	Range high	Unit
	Downtime		days/year		days/year
	Reliability		%		%

Safety of system

Must be regularly inspected to prevent catastrophic failure, but reamains a low-maintenance, highly reliable technology.

Sustainability	Range low	Unit	Range high	Unit	
Recyclabilty		%		%	
Environmental impact Essentially no direct carbon emissions					
Resource Depletion					

Final remarks	A low maintenance, fast-response method of energy storage.
	High initial costs, low storge capacity and high self-discharge rate.
	*25 kWh flywheels are still in development.

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

U.S. Department of Energy (2013). Grid Energy Storage. U.S. Department of Energy.

European Commission Directorate General for Energy (2013). The Future Role and Challenges of Energy Storage. *European Commission Directorate General for Energy*.

Bradbury, K. (2010). Energy Storage Technology Review
Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewable
Integration. *Global Energy Network Institute*.

Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. *Alliander*. Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. *Elsevier Inc.*

SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. Massachusetts Institute of Technology.

Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems - Characteristics and comparisons. *Renewable and Sustainable Energy Reviews 12*, 1221 - 1250.

Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy Storage for Transmission and Distribution Applications. *U.S. Department of Energy*.

Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. *Intelligent Energy Europe*.

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171.

Depatment of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. *Department of Trade and Industry*.

Pumped Hydro Storage

Technology name	Mechanical Storage - Pumped Hydro Storage
Description	Pumped hydro stores energy by using electricity to pump water from a lower
	reservoir to an upper reservoir and recovers energy by allowing the water to
	flow back through turbines to produce electricity.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	5.00	MW	5.00	GW
Charge power	5.00	MW	5.00	GW
Energy storage capacity	1,200.00	MWh	120.00	GWh
Energy density	0.50	kWh/m3	1.50	kWh/m3
Response time discharge	10.00	S	15.00	min
Response time charge	1.00	min	15.00	min
Costs power	500.00	€/kW	3,600.00	€/kW
Costs energy	40.00	€/kWh	680.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	1.00	hours	100.00	hours
Ramp up speed	10.00	MW/min	60.00	MW/min
Ramp down speed	10.00	MW/min	60.00	MW/min
Cost projection (2020)		€/Wh		€/kWh
Cost projection (2020)		€/Wh		€/kWh
Self-discharge rate	0.00	%		
Roundtrip efficiency	55.00	%	85.00	%
Lifetime			50.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtime		days/year		days/year
Reliability	Very reliable	%		%

Safety of system		
Salety of System		
i		

Sustainability	
Recyclabilty	
Environmental impact	Huge environmental impact
Resource Depletion	

Low cost, long life, high efficiency and lack of cycling degredation makes it a unique storage technology.
Highly dependent on limited appropriate construction sites. Requires a sgnificant water source.

	Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast
Sources used for this label	Perspective White Paper
	U.S. Depatment of Energy (2013). Grid Energy Storage. U.S. Department of
	Energy.

European Commission Directorate General for Energy (2013). The Future Role and Challenges of Energy Storage. European Commission Directorate General for Energy.

Bradbury, K. (2010). Energy Storage Technology Review

European Commission Directorate General for Energy (2013). The Future Role and Challenges of Energy Storage. European Commission Directorate General for Energy.

Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewable Integration. Global Energy Network Institute.
Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. Alliander.

Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. *Elsevier Inc.*

SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. Massachusetts Institute of Technology.

Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems - Characteristics and comparisons. *Renewable and Sustainable Energy Reviews 12*, 1221 - 1250.

Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy Storage for Transmission and Distribution Applications. *U.S. Department of Energy*.

Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. Intelligent Energy Europe. Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171.

Depatment of Trade and Industry (2004). Review of Electrical Energy Storage

Depatment of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. Department of Trade and Industry.

Compressed Air Energy Storage

Technology name	Mechanical Storage - Compressed Air Energy Storage (CAES)
Description	CAES was first developed to provide load following and meet peak demand.
	The basic operation is similar to a conventional gas turbine, but uses pre-
	compressed air from off-peak electrical power instead of compressing air by
	burning natural gas.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	50.00	MW	320.00	MW
Charge power	30.00	MW	200.00	MW
Energy storage capacity	360.00	MWh	2,860.00	MWh
Energy density	=	MWh/m3	-	MWh/m3
Response time discharge	5.00	min	15.00	min
Response time charge	5.00	min	0.25	hours
Costs power	400.00	€/kW	1,150.00	€/kW
Costs energy	10.00	€/kWh	120.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Tranportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	3.00	hours	40.00	hours
Ramp up speed	15.00	MW/min	95.00	MW/min
Ramp down speed	15.00	MW/min	95.00	MW/min
Cost projection (2020)	360.00	€/kW	1,035.00	€/kW
Cost projection (2020)	9.00	€/kWh	108.00	€/kWh
Self-discharge rate	0.00	%/day	0.00	%/day
Roundtrip efficiency*	64.00	%	80.00	%
Lifetime	25.00	Years	40.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtime		days/year		days/year
Reliability	,	%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact Three times lower than a conventional natural gas turbine.				
Resource Depletion				_

Final remarks

High storage capacity and relatively low cost per unit stored Problematic to obtain appropriate storage media (eg. caverns) Highly suitable for energy management and power quality. *The process still consumes natural gas, but this is generally omitted from the roundtrip efficiency calculations (roughly 30% of electricity produced results from the combustion of natural gas). E.g. To produce 1 kWh of electricity, 0.7-0.8 kWh of electricity must be stored to compress air and 1.22 kWh of natural gas must be combusted to retrieve the air; the combustion of natural gas also produces electricity, but the efficiency of this process is not considered when calculating the efficiency of the CAES system.

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

U.S. Department of Energy (2013). Grid Energy Storage. U.S. Department of Energy.

European Commission Directorate General for Energy (2013). The Future Role and Challenges of Energy Storage. *European Commission Directorate General for Energy*.

Arizona Research Institute for Solar Energy (2010). Study of Compressed Air Energy Storage with Grid and Photovoltaic Energy Generation.

Bradbury, K. (2010). Energy Storage Technology Review
Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewable
Integration. *Global Energy Network Institute*.

Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. *Alliander.* Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. *Elsevier Inc.*

SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. Massachusetts Institute of Technology.

Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems - Characteristics and comparisons. *Renewable and Sustainable Energy Reviews 12*, 1221 - 1250.

Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy Storage for Transmission and Distribution Applications. *U.S. Department of Energy*.

Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. *Intelligent Energy Europe*. Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. *Renewable and Sustainable Energy Reviews 16*, 2154 - 2171.

Depatment of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. *Department of Trade and Industry*.

Lead Acid Battery

Technology name	Electrochemical Storage - Lead Acid Batteries
Description	Lead Acid batteries are composed of a sponge metallic lead anode, a lead-
	dioxide cathode and sulfuric acid solution electrolyte. They have a relatively
	low cost, simple design, good life cycle (if used correctly) and quick reaction
	kinetics. Several cells can be connected to greatly increase power rating and
	Energy storage capacity.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	1.00	kW	50.00	MW
Charge power	1.00	kW	50.00	MW
Energy storage capacity	1.00	kWh	50.00	MWh
Energy density	50.00	kWh/m3	80.00	kWh/m3
Response time discharge	1.00	S	1.00	S
Response time charge	1.00	S	1.00	S
Costs power	110.00	€/kW	5,800.00	€/kW
Costs energy	130.00	€/kWh	3,800.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	0.50	hours	10.00	hours
Ramp up speed	#N/A	kW/min	#N/A	MW/min
Ramp down speed	#N/A	MW/min	#N/A	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	0.10	%/day	0.30	%/day
Roundtrip efficiency	75.00	%	90.00	%
Lifetime	2,200.00	Cycles	100,000.00	Cycles
Lifetime	3.00	Years	10.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology		Research	Demonstration	Deployed	Commercial
Reliability		Range low	Unit	Range high	Unit
	Downtime		days/year		days/year
	Reliability		%		%

Safety of system	Uses toxic metals (i.e. Lead) and hazardous chemicals (i.e. sulfuric acid).
	Hydrogen and oxygen gas are produced if over-charged - a potentially explosive
	mixture in exclosed areas.

Sustainability	
Recyclabilty	Easily recyclable
	Lead can cause severe damage to people and animals if not properly disposed
Environmental impact	of.
Resource Depletion	

Final remarks	Easy and cheap to produce
	Very high surge-to-weitgh ratio (can deliver a high jolt of electricity at once).
	Relatively heavy and bulky
	Distilled water must be refilled several times per year.
	Relatively short-lived
	Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast
Sources used for this label	Perspective White Paper Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A
	review of available methods and developments on energy storage;
	technology update. Renewble and Sustainable Energy Reviews, 532-545
	Bradbury, K. (2010). Energy Storage Technology Review
	Leuthold, D. M. (2012). Storage Technologies for the Integration of Renewable Energy. <i>RWTH Aachen University</i>
	U.S. Depatment of Energy (2013). Grid Energy Storage. U.S. Department of Energy.
	European Commission Directorate General for Energy (2013). The Future Rol and Challenges of Energy Storage. European Commission Directorate General for Energy.
	Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewabl Integration. <i>Global Energy Network Institute</i> .
	Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. Alliander
	Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. <i>Elsevier Inc.</i>
	SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage.
	Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. <i>Massachusetts Institute of Technology</i> .
	Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems -
	Characteristics and comparisons. Renewable and Sustainable Energy Reviews 12, 1221 - 1250.
	Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy
	Storage for Transmission and Distribution Applications. U.S. Department of
	Energy.
	Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. <i>Intelligent Energy Europe</i> .
	Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R.

(2012). A review of energy storage technologies for wind power applications.

Depatment of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. *Department of*

Renewable and Sustainable Energy Reviews 16, 2154 - 2171.

Trade and Industry.

Lithium Ion Batte	ry			
Technology name	Electrochemical St	orage - Lithium Ion	Batterv	
Description		_	-	lithium metal anode.
Description			•	
				v self-discharge, high
	roundtrip efficience	and high cost. Seve	eral cells can be con	nected to greatly
	increase power rat	ing and Energy stora	age capacity	
	l			
Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	1.00	kW	5,000.00	
Charge power	1.00	kW	5,000.00	kW
Energy storage capacity	500.00	Wh	100.00	MWh
Energy density	200.00	kWh/m3	500.00	kWh/m3
Response time discharge	1.00		998.00	
Response time charge	1.00		998.00	
Costs power	130.00		4,000.00	
Costs energy	250.00	€/kWh	4,500.00	€/kWh
Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Energy carrier type	Licetricity	Gas	ricat	Liquid ruci
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief	Diagn Start		Utilization	shifting & firming
		grid		
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	
Sector for use	Utilities	Transmission &	Demand	Renewable
Sector for use	Othlics		Demand	
		distribution		integration
-				T .
Expert properties	Lower Range	Unit	Upper Range	Unit
Expert properties Operational time	0.50	hours	15.00	hours
	0.50		15.00	
Operational time	0.50 #N/A	hours	15.00 #N/A	hours
Operational time Ramp up speed Ramp down speed	0.50 #N/A #N/A	hours kW/min kW/min	15.00 #N/A #N/A	hours MW/min MW/min
Operational time Ramp up speed Ramp down speed Cost projection (2020)	0.50 #N/A #N/A 55.90	hours kW/min kW/min €/kW	15.00 #N/A #N/A 1,720.00	hours MW/min MW/min €/kW
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020)	0.50 #N/A #N/A 55.90 107.50	hours kW/min kW/min €/kW	15.00 #N/A #N/A 1,720.00 1,935.00	hours MW/min MW/min €/kW €/kWh
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate	0.50 #N/A #N/A 55.90 107.50	hours kW/min kW/min €/kW €/kWh	15.00 #N/A #N/A 1,720.00 1,935.00 0.10	hours MW/min MW/min €/kW €/kWh
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency	0.50 #N/A #N/A 55.90 107.50 0.10	hours kW/min kW/min €/kW €/kWh %/day	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00	hours MW/min MW/min €/kW €/kWh %/day
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate	0.50 #N/A #N/A 55.90 107.50	hours kW/min kW/min €/kW €/kWh %/day	15.00 #N/A #N/A 1,720.00 1,935.00 0.10	hours MW/min MW/min €/kW €/kWh %/day
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00	hours kW/min kW/min €/kW €/kWh %/day	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00	hours MW/min MW/min €/kW €/kWh %/day
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00	hours kW/min kW/min €/kW €/kWh %/day % Cycles	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous	hours kW/min kW/min €/kW €/kWh %/day % Cycles	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds)	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes)	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months)
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds)	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes)	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months)
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds)	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes)	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days)	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months)
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds)	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds)	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days)	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds)	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days)	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low Lithium can be flan Requires overcharg	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Recyclabilty	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year %	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Recyclabilty Environmental impact	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low Lithium can be flan Requires overcharge Highly Recyclable	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year % nmable if exposed to be protection	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year %
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Recyclabilty	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low Lithium can be flan Requires overcharge Highly Recyclable	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year % nmable if exposed to be protection	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year %
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Recyclabilty Environmental impact	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low Lithium can be flan Requires overcharge Highly Recyclable	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year % nmable if exposed to be protection	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year %
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Environmental impact Resource Depletion	0.50 #N/A #N/A 55.90 107.50 0.10 87.00 4,500.00 5.00 Instantaneous (seconds) Research Range low Lithium can be flan Requires overcharge Highly Recyclable Lithium and graphi	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year % mable if exposed to be protection	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year %
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Recyclabilty Environmental impact	Range low Lithium can be flan Requires overcharg Highly Recyclable Lithium and graphi Highest energy der	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year % mable if exposed to be protection te are readily availal sity in commercially	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year % %
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system Sustainability Environmental impact Resource Depletion	Range low Lithium can be flan Requires overcharg Highly Recyclable Lithium and graphi Highest energy der	hours kW/min kW/min €/kW €/kWh %/day % Cycles Years Fast (Minutes) Demonstration Unit days/year % mable if exposed to be protection te are readily availal sity in commercially	15.00 #N/A #N/A 1,720.00 1,935.00 0.10 95.00 100,000.00 15.00 Medium (Days) Deployed Range high	hours MW/min MW/min €/kW €/kWh %/day % Cycles Years Long (months) Commercial Unit days/year % %

Low energy loss

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage; technology update. *Renewble and Sustainable Energy Reviews*, 532-545

Bradbury, K. (2010). Energy Storage Technology Review Leuthold, D. M. (2012). Storage Technologies for the Integration of Renewable Energy. *RWTH Aachen University*

European Commission Directorate General for Energy (2013). The Future Role and Challenges of Energy Storage. *European Commission Directorate General for Energy*.

U.S. Department of Energy (2013). Grid Energy Storage. U.S. Department of Energy.

Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewable Integration. *Global Energy Network Institute*.

Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. Alliander.

Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. *Elsevier Inc.*

SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. Massachusetts Institute of Technology.

Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems - Characteristics and comparisons. *Renewable and Sustainable Energy Reviews 12*, 1221 - 1250.

Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy Storage for Transmission and Distribution Applications. *U.S. Department of Energy*.

Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. *Intelligent Energy Europe*.

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171.

Department of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. *Department of Trade and Industry*.

Vanadium Redox Flow Battery

Technology name	Electrochemical Storage - Vanadium Redox Flow Battery				
Description	Redox flow batteries employ a reversible fuel cell with the electro-active				
	componenets dissolved in an electrolyte. The design allows a decoupling				
	power and energy.				

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power†	5.00	kW	10.00	MW
Charge power	0.01	MW	10.00	MW
Energy storage capacity	0.50	MWh	8.00	MWh
Energy density	20.00	kWh/m3	30.00	kWh/m3
Response time discharge	0.02	ms	0.30	ms
Response time charge	0.02	ms	0.30	ms
Costs power*	3,000.00	€/kW	4,900.00	€/kW
Costs energy*	600.00	€/kWh	1,100.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	4.00	hours	10.00	hours
Ramp up speed	#N/A	MW/s	#N/A	MW/min
Ramp down speed	#N/A	MW/min	#N/A	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	0.20	%/day	0.20	%/day
Roundtrip efficiency	60.00	%	85.00	%
Lifetime	10,000.00	Cycles	10,000.00	Cycles
Lifetime	10.00	Years	20.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minute:	Medium (Days)	Long (months)

Maturity of technology		Research	Demonstration	Deployed†	Commercial
Reliability		Range low	Unit	Range high	Unit
	Downtime		days/year		days/year
	Reliability		%		%

Safety of system	Safer than conventional batteries because the active materials are stored
	separately from the reactive point source

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks

†Larger 10 MW systems are still in development, but are expected in the coming years. Smaller 5 kW systems have been deployed.

*System costs are expected to fall significantly in the coming years.

It is possible to design a system with optimal power acceptance and delivery properties.

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage;

Bradbury, K. (2010). Energy Storage Technology Review

U.S. Department of Energy (2013). Grid Energy Storage. U.S. Department of Energy.

Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. Alliander.

Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. *Elsevier Inc.*

SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. Massachusetts Institute of Technology.

Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems - Characteristics and comparisons. *Renewable and Sustainable Energy Reviews 12*, 1221 - 1250.

Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy Storage for Transmission and Distribution Applications. *U.S. Department of Energy*.

Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. *Intelligent Energy Europe*.

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171.

Department of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. *Department of Trade and Industry*.

Supercapacitors

Technology name	Electrical Storage - Supercapacitors				
Description	Supercapacitors store energy in large electrostatic fields between two				
	conductive plates, which are separated by a small distance. Electricity can l				
	quickly stored and released using this technology in order to produce short				
	bursts of power.				

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	10.00	kW	1.00	MW
Charge power	10.00	kW	1.00	MW
Energy storage capacity	2.00	Wh	1,000.00	kWh
Energy density	0.10	Wh/kg	15.00	Wh/kg
Response time discharge	1.00	S	1.00	S
Response time charge	1.00	S	1.00	S
Costs power	100.00	€/kW	400.00	€/kW
Costs energy	300.00	€/kWh	4,000.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation*
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	598.80	ms	1.00	hours
Ramp up speed	#N/A	MW/min	#N/A	MW/min
Ramp down speed	#N/A	MW/min	#N/A	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/Wh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/Wh
Self-discharge rate	2.00	%/day	40.00	%/day
Roundtrip efficiency	60.00	%	98.00	%
Lifetime	10,000.00	Cycles	100,000,000.00	Cycles
Lifetime	20.00	Years	20.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtime		days/year		days/year
Reliability		%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact	Little to no direct environmental impact.			
Resource Depletion				

Final remarks

Can be charged and discharged continuously without degrading, and much more quickly than batteries.

*Can be used in Transportation specifically for regenerative breaking.

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

International Energy Agency (2014). Technology Roadmap - Energy Storage. International Energy Agency.

Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage;

Bradbury, K. (2010). Energy Storage Technology Review European Commission Directorate General for Energy (2013). The Future Role and Challenges of Energy Storage. European Commission Directorate General for Energy.

Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. *Alliander*. Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy: Meeting the Challenges of Integration with Storage. *Elsevier Inc.*

SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projects. Massachusetts Institute of Technology.

Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems - Characteristics and comparisons. *Renewable and Sustainable Energy Reviews 12*, 1221 - 1250.

Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy Storage for Transmission and Distribution Applications. *U.S. Department of Energy*.

Energy Economics Group (2012). Facilitating energy storage to allow high penetration of intermittent renewable energy. *Intelligent Energy Europe*.

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171.

Depatment of Trade and Industry (2004). Review of Electrical Energy Storage Technologies and Systems and of their Potential for the UK. *Department of Trade and Industry*.

Superconducting Magnetic Energy Storage

Magnetic Storage - Superconducting Magnetic Energy Storage (SMES)
SMES stores flowig electric current in a superconducting coil as a magnetic
field. These devices are extremely efficient, fast-responding, scalable to large
sizes and environmentally benign, although very costly. There are very low
losses except for the parasitic losses to keep the superconducting coil cooled.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	10.00	kW	10.00	MW
Charge power	0.01	MW	10.00	MW
Energy storage capacity	10.00	Wh	1.00	MWh
Energy density	0.20	kWh/m3	2.50	kWh/m3
Response time discharge	100.00	ms	100.00	ms
Response time charge	100.00	ms	100.00	ms
Costs power	100.00	€/kW	400.00	€/kW
Costs energy	750.00	€/kWh	7,000.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	5.00	S	5.00	min
Ramp up speed	#N/A	kW/min	#N/A	MW/min
Ramp down speed	#N/A	MW/min	#N/A	MW/min
Cost projection (2020)	#N/A	€/kW	#N/A	€/kW
Cost projection (2020)	#N/A	€/kWh	#N/A	€/kWh
Self-discharge rate	10.00	%/day	15.00	%/day
Roundtrip efficiency	90.00	%	95.00	%
Lifetime	100,000.00	Cycles	100,000.00	Cycles
Lifetime	20.00	Years	30.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology		Research	Demonstration	Deployed	Commercial
Reliability		Range low	Unit	Range high	Unit
	Downtime		days/year		days/year
	Reliability		%		%

Safety of system	
	Possible concerns of the effects of strong magnetic fields on human physiology.

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
	Little to no impact,	except possibly from	m large magnetic fie	lds on human
Environmental impact	physiology.			
Resource Depletion				

Final remarks	Very expensive, short storage time and requires extremely low temperatures 255 to -264 C).
	Fast response times and minimal environmental impact.
	Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast
Sources used for this label	Perspective White Paper
	International Energy Agency (2014). Technology Roadmap - Energy Storage.
	International Energy Agency.
	European Commission Directorate General for Energy (2013). The Future Ro
	and Challenges of Energy Storage. European Commission Directorate Gener
	for Energy.
	Bradbury, K. (2010). Energy Storage Technology Review
	Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems -
	Characteristics and comparisons. Renewable and Sustainable Energy
	Reviews 12, 1221 - 1250
	Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewal
	Integration. Global Energy Network Institute.
	Stuurgroep (2014). All Store - De toekomst van elektriciteitsopslag. Alliande
	Wang, W. M., Wang, J. & Ton, D. (2012). Prospects for Renewable Energy:
	Meeting the Challenges of Integration with Storage. Elsevier Inc.
	SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage
	Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with
	Photovoltaics: Current Technologies and Future Projects. Massachusetts
	Institute of Technology.
	Ibrahim, H., Ilinca, A. & Perron, J. (2008). Energy storage systems -
	Characteristics and comparisons. Renewable and Sustainable Energy
	Reviews 12, 1221 - 1250. Electric Power Research Institute (2003). EPRI-DOE Handbok of Energy
	Storage for Transmission and Distribution Applications. U.S. Department of
	Energy.
	Energy Economics Group (2012). Facilitating energy storage to allow high
	penetration of intermittent renewable energy. Intelligent Energy Europe.
	Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R.
	(2012). A review of energy storage technologies for wind power application
	Renewable and Sustainable Energy Reviews 16, 2154 - 2171.
	Depatment of Trade and Industry (2004). Review of Electrical Energy Storag
	Technologies and Systems and of their Potential for the UK. Department of
	Trade and Industry

Trade and Industry.

Thermal Hot Water

Technology name	Thermal Storage - Sensible Heat - Hot Water
Description	
	Sensible heat storage is achieved by adding energy to a material (typically
	water) to increase its temperature without changing its phase. The quantity of
	stored heat depends on the quantity of storage material, the heat capacity of
	storage material and the temperature change. The storage material can be
	housed in steel tanks or an artificial pit structure.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	10.00	kW	10.00	MW
Charge power	10.00	kW	10.00	MW
Energy storage capacity	5.00	kWh	900.00	MWh
Energy density	10.00	kWh/m3	90.00	kWh/m3
Response time discharge	5.00	min	10.00	min
Response time charge	5.00	min	10.00	min
Costs power	750.00	€/kW	250.00	€/kW
Costs energy	0.50	€/kWh	3.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel			
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing			
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak			
Congestion Relief		grid	Utilization	shifting & firming			
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation			
			Power Supply				

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	2.00	hours	3.00	day
Ramp up speed	1.00	kW/min	2.00	MW/min
Ramp down speed	1.00	kW/min	2.00	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	#N/A	%/day	#N/A	%/day
Roundtrip efficiency	50.00	%	90.00	%
Lifetime	20.00	Years	20.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtim	е	days/year		days/year
Reliabilit	·y	%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks	A simple, low-cost, mature, reliable technology.				
	Can be used to significantly offset peak energy demands. In France, peak				
	heating demands have been reduced by 5% (5 GW) due to hot water storage				
	implementation in households.				

Sources used for this label	International Energy Agency (2014). Technology Roadmap - Energy Storage.
	International Energy Agency.
	Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A
	review of available methods and developments on energy storage;
	technology update. Renewble and Sustainable Energy Reviews , 532-545
	Interntional Renewable Energy Agency (2013). Therma Energy Storage -
	Technology Brief.
	Xu, J., Wang, R.Z. & Li, Y. (2014). A review of available technologies for
	seasonal thermal energy storage. Solar Energy 103, 610-638.

Underground Thermal Storage

Technology name	Thermal Storage - Sensible Heat - Underground Storage
Description	Sensible heat storage is achieved by adding energy to an underground storage
	media (such as water or rock) to increase its temperature without changing its
	phase. Heat can be stored in underground aquifers, boreholes or caverns by
	pumping heat in and out via an energy carrier.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	10.00	kW	10.00	MW
Charge power	10.00	kW	10.00	MW
Energy storage capacity	5.00	kWh	900.00	MWh
Energy density	10.00	kWh/m3	90.00	kWh/m3
Response time discharge	5.00	min	10.00	min
Response time charge	5.00	min	10.00	min
Costs power	2,500.00	€/kW	3,300.00	€/kW
Costs energy	0.10	€/kWh	10.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	2.00	hours	3.00	day
Ramp up speed	1.00	kW/min	2.00	MW/min
Ramp down speed	1.00	kW/min	2.00	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	#N/A	%/day	#N/A	%/day
Roundtrip efficiency	50.00	%	90.00	%
Lifetime	20.00	Years	20.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology		Research	Demonstration	Deployed	Commercial
Reliability		Range low	Unit	Range high	Unit
	Downtime		days/year		days/year
	Reliability		%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclab	oilty	%		%
Environmental imp	act	kgCO2/kW		kgCO2/GW
Resource Deplet	tion			

Final remarks

A simple, low-cost, mature, reliable technology.
Comparable to Thermal Hot Water Storage, but requires stable ground conditions and appropriate geological conditions, can be more costly, but requires less infrastructure.

Sources used for this label	International Energy Agency (2014). Technology Roadmap - Energy Storage.
	International Energy Agency.
	Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A
	review of available methods and developments on energy storage; technology
	update. Renewble and Sustainable Energy Reviews , 532-545
	Interntional Renewable Energy Agency (2013). Therma Energy Storage -
	Technology Brief.
	Xu, J., Wang, R.Z. & Li, Y. (2014). A review of available technologies for
	seasonal thermal energy storage. <i>Solar Energy 103,</i> 610-638.

Molten Salts

Technology name	Thermal Storage - Sensible Heat - Molten Salts
Description	Molten salts are regraded as an ideal storage material for use in solar power
	plants because of their excellent thermal stability under high temperatures, low
	vapour pressure, low viscosity, hgh thermal conductivities, non-flammability
	and non-toxicity.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	19.90	MW	19.90	MW
Charge power	53.00	MW	53.00	MW
Energy storage capacity	30.00	MWh	30.00	MWh
Energy density	160.00	kWh/m3	465.00	kWh/m3
Response time discharge	5.00	min	10.00	min
Response time charge	5.00	min	10.00	min
Costs power	0.00	€/kW	11,560.00	€/kW
Costs energy	2.70	€/kWh	16.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	15.00	hours	0.63	day
Ramp up speed	1,990.00	kW/min	3.98	MW/min
Ramp down speed	5.30	MW/min	10.60	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	#N/A	%/day	#N/A	%/day
Roundtrip efficiency	40.00	%	93.00	%
Lifetime	#N/A	Years	#N/A	Years
	Instantaneous	Fast (Minutes-		
Storage time	(seconds)	Hours)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtin	ne	days/year		days/year
Reliabili	ty	%		%

Safety of system	Hgh temperatures can cause issues
	Molten salts are non-flmmable and non-txic

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks

This information is based off of the Gemasolar power plant in Spain, which pairs molten salts with a CSP setup to provide power 24 hours per day.

Sources used for this label International Energy Agency (2014). Technology Roadmap - Energy Storage. International Energy Agency. Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage; technology update. Renewble and Sustainable Energy Reviews, 532-545 Tian, Y., & Zhao, C. (2013). A review of solar collectors and thermal energy storage in thermal applications. Applied Energy, 538-553. SBC Energy Institue (2013). Electricity Storage Factbook. SBC Energy Storage. Interntional Renewable Energy Agency (2013). Therma Energy Storage -

Technology Brief.
http://www.nrel.gov/csp/solarpaces/project detail.cfm/projectID=40

Xu, J., Wang, R.Z. & Li, Y. (2014). A review of available technologies for seasonal thermal energy storage. *Solar Energy 103*, 610-638.

Latent Heat (Phas	e Change	e Materia	als)	
Technology name	Thermal Storage - Latent Heat (Phase Change Materials)			
Description	Latent heat storage is based on the heat release or absorption during phase change of a storage material from solid to liquid or liquid to gas or vice versa.			
Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	10.00	kW	1.00	MW
Charge power	10.00	kW	1.00	MW
Energy storage capacity*	-	MWh	-	MWh
Energy density	50.00	kWh/m3	123.00	kWh/m3
Response time discharge	5.00	min	10.00	min
Response time charge	5.00		10.00	
Costs power	4,500.00		11,000.00	
Costs energy	10.00	€/kWh	50.00	€/kWh
Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible Power Supply	Transportation
Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration
Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time		hours	3.00	day
Ramp up speed		kW/min		MW/min
Ramp down speed		kW/min		MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	#N/A	%/day	#N/A	%/day
Roundtrip efficiency	75.00		90.00	
Lifetime	#N/A	Years	#N/A	Years
	Instantaneous		,	
Storage time		Fast (Minutes)	Medium (Days)	Long (months)
Maturity of technology	Research	Demonstration	Deployed	Commercial
.,			250,575	
Reliability	Range low	Unit	Range high	Unit
Downtime	3	days/year	J- 6	days/year
Reliability		%		%
Reliability		<u> </u>	<u> </u>	

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks

Safety of system

Latent heat storage has a much higher energy density than thermal heat storage.

Phase change materials are typically much mor costly than sensible heat storage materials.

*Energy storage capacity depends on the size of future storage systems which

Sources used for this label	International Energy Agency (2014). Technology Roadmap - Energy Storage. International Energy Agency.
	Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage; technology update. Renewble and Sustainable Energy Reviews, 532-545
	Tian, Y. & Zhao, C.Y. (2013). A review of solar collectors and thermal energy storage in thermal applications. <i>Applied Energy 104,</i> 538-553
	Interntional Renewable Energy Agency (2013). Therma Energy Storage - Technology Brief.
	Xu, J., Wang, R.Z. & Li, Y. (2014). A review of available technologies for seasonal thermal energy storage. <i>Solar Energy 103</i> , 610-638.

Hydrogen Electrolysis

Technology name	Gas Storage - Hydrogen Electrolysis
Description	Using excess renewable electricity, hydrogen can be generated and stored
	using electrolysis. Re-electrification can be achieved through use of a fuel cell;
	Thermal energy can be produced through combustion.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	100.00	kW	50.00	MW
Charge power	100.00	kW	50.00	MW
Energy storage capacity*	120.00	MWh	1,800.00	GWh
Energy density	5,600.00	MJ/m3	1.56	MWh/m3
Response time discharge	10.00	min	10.00	min
Response time charge	10.00	min	0.17	hours
Costs power	370.00	€/kW	550.00	€/kW
Costs energy	370.00	€/kWh	370.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	#N/A	hours	#N/A	hours
Ramp up speed	10.00	kW/min	5.00	MW/min
Ramp down speed	10.00	kW/min	5.00	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	0.00	%/day	3.00	%/day
Roundtrip efficiency (gas)†	70.00	%	80.00	%
Roundtrip efficiency (electricity)†	40.00	%	45.00	%
Lifetime	15.00	Years	17.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtime		days/year		days/year
Reliability	,	%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks

Clean way of storing huge amounts of energy for long periods of time. Very low efficiency.

*Gas grid can accommodate up to 5% hydrogn content, which is equivalent to 1.8 TWh in Germany.

†Efficiency depends on whether the hydrogen is converted back into electricity or heat.

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

International Electrotechnical Commission, "Electrical Energy Storage - White Paper," International Electrotechnical Commission, 2011.

International Energy Agency (2014). Technology Roadmap - Energy Storage. International Energy Agency.

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171

Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projections. *Massachusetts Institue of Technology*.

Janssen, A., Lambregts, B., van der Sluis, . & Bos, C. (2012). A complemetary role for natural gas in the electric energy transition. *Energy Delta Gas Research*.

Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage; technology update. *Renewble and Sustainable Energy Reviews*, 532-545

Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewable Integration. *Global Energy Network Institute*.

Synthetic Methane Storage

Technology name	Synthetic Methane Storage - Methanation
Description	Using excess renewable electricity, hydrogen can be generated and stored
	using electrolysis. Hydrogen can be further converted to methane by combining
	it with carbon dioxide in a methanation process. Methanation is not, strictly
	speaking, a storage technology, but rather a means of converting surplus
	electricity into an easily storabel medium.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	100.00	kW	50.00	MW
Charge power	100.00	kW	50.00	MW
Energy storage capacity*	120.00	MWh	220,000.00	MWh
Energy density	9,326.00	MJ/m3	9,326.00	MJ/m3
Response time discharge	10.00	min	10.00	min
Response time charge	10.00	min	10.00	min
Costs power	1,000.00	€/kW	2,000.00	€/kW
Costs energy	370.00	€/kWh	370.00	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	#N/A	hours	#N/A	hours
Ramp up speed	10.00	kW/min	5.00	MW/min
Ramp down speed	0.01	MW/min	5.00	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	0.00	%/day	3.00	%/day
Roundtrip efficiency (gas)†	30.00	%	45.00	%
Roundtrip efficiency (electricity)†	49.00	%	64.00	%
Lifetime	15.00	Years	17.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtim	e	days/year		days/year
Reliabilit	у	%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks

Clean way of storing huge amounts of energy for long periods of time. Very low efficiency.

*Methane can be stored with natural gas, including within the gas grid, which is equivalent to 220 TWh in Germany.

†Efficiency depends on whether the hydrogen is converted back into electricity or heat.

Sources used for this label

Ecofys (2014). Energy Storage Opportunities and Challenges - A West Coast Perspective White Paper

International Electrotechnical Commission, "Electrical Energy Storage - White Paper," International Electrotechnical Commission, 2011.

International Energy Agency (2014). Technology Roadmap - Energy Storage. International Energy Agency.

Diaz-Gonzalez, F., Sumper, A., Gomis-Bellmunt, O. & Villafafila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 16, 2154 - 2171 Mosher, T. (2006). Economic Valuation of Energy Storage Coupled with Photovoltaics: Current Technologies and Future Projections. Massachusetts Institue of Technology.

Janssen, A., Lambregts, B., van der Sluis, . & Bos, C. (2012). A complemetary role for natural gas in the electric energy transition. *Energy Delta Gas Research*.

Mahlia, T., Saktisahdan, T., Jannifar, A., Hasan, M. & Matseelar, H. (2014). A review of available methods and developments on energy storage; technology update. *Renewble and Sustainable Energy Reviews*, 532-545 Oberhofer, A. (2012). Energy Storage Technologies & Their Role in Renewable Integration. *Global Energy Network Institute*.

Gas Storage - Salt Caverns

Technology name	Gas Storage - Salt Caverns
Description	Gas storage facilities created in salt layers which have less working volume
	than depleted gas fields and are mainly used for peak supply.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	1.00	GW	2.25	GW
Charge power	500.00	MW	1.10	MW
Energy storage capacity	324.90	GWh	758.10	GWh
Energy density	=	MWh/m3	-	MWh/m3
Response time discharge	1.00	hours	1.00	hours
Response time charge	1.00	hours	1.00	hours
Costs power	15.00	€/kW	15.00	€/kW
Costs energy	0.03	€/kWh	0.03	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing*
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	10.00	day	20.83	day
Ramp up speed	16.67	MW/min	37.50	MW/min
Ramp down speed	8.33	MW/min	0.02	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/Wh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/Wh
Self-discharge rate	0.00	%/day	0.00	%/day
Roundtrip efficiency	#N/A	%	#N/A	%
Lifetime	15.00	Years	15.00	Years
	Instantaneous		Medium	
Storage time	(seconds)	Fast (Minutes)	(10 -30 Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtime	е	days/year		days/year
Reliabilit	Very reliable			%

	Systems have been in operation for many decades and have proven to be very
Safety of system	safe a reliable
	Micro-fractures can occur if gas is added or removed too quickly

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Final remarks

Caverns can be filled and emptied much faster than seasonal storage facilities. Caverns can be built in stages with limited incremental cost for each additional stage.

Requires cushion gas of 20 - 30%. Caverns can only be built in areas with proper geological formations. All calcuations assume a gas price of 0.25 €/m3 *Seasonal storage can be provided by a sufficiently large number of cavern storage facilities, although this is likely less efficient than using DGF or Aquifers. Clingendael International Energy Programme. (2006). The European Market Sources used for this label for Seasonal Storage. Clingendael International Energy Programme. Janssen, A., Lambregts, B., van der Sluis, . & Bos, C. (2012). A complemetary role for natural gas in the electric energy transition. Energy Delta Gas Research. Federal Energy Regulatory Commission, Current State and Issues Concerning Underground Natural Gas Storage, 2004 NaturalGas.org, http://naturalgas.org/naturalgas/storage/, Accessed 07/14/2014 British Geological Survey, 2008. An appraisal of underground gas storage technologies and incidents, for the development of risk assessment

methodology,

Gas Storage - Aqu	ifers & D	epleted (Gas/Oil F	ields
Technology name	Gas Storage - Aqui	fers & Depleted Ga	s/Oil Fields	-
Description	seasonal storage. A		-	d gas/oil fields for s a strategic stock or
Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	7.50	GW	14.00	GW
Charge power	4.50	GW	6.00	GW
Energy storage capacity	21.66	TWh	44.40	TWh
Energy density	-	MWh/m3	-	MWh/m3
Response time discharge	3.00	hours	1.00	day
Response time charge	3.00	hours	1.00	day
Costs power	23.00	€/kW	32.00	€/kW
Costs energy		€/kWh		€/kWh
3,	<u> </u>	•		
Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible Power Supply	Transportation
Sector for use	Utilities	Transmission & distribution	Demand	Renewable integration
		distribution		integration
Expert properties	Lower Range	Unit	Unner Range	Unit
Expert properties Operational time	Lower Range	Unit	Upper Range	Unit
Operational time	80.00	day	150.00	day
Operational time Ramp up speed	80.00 5.21	day MW/min	150.00 77.78	day MW/min
Operational time Ramp up speed Ramp down speed	80.00 5.21 3.13	day MW/min MW/min	150.00 77.78 33.33	day MW/min MW/min
Operational time Ramp up speed Ramp down speed Cost projection (2020)	80.00 5.21 3.13 #N/A	day MW/min MW/min €/Wh	150.00 77.78 33.33 #N/A	day MW/min MW/min €/kWh
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020)	80.00 5.21 3.13 #N/A #N/A	day MW/min MW/min €/Wh	150.00 77.78 33.33 #N/A #N/A	day MW/min MW/min €/kWh
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate	80.00 5.21 3.13 #N/A #N/A 0.00	day MW/min MW/min €/Wh %/day	150.00 77.78 33.33 #N/A #N/A	day MW/min MW/min €/kWh %/day
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency	80.00 5.21 3.13 #N/A #N/A 0.00	day MW/min MW/min €/Wh €/Wh %/day %	150.00 77.78 33.33 #N/A #N/A 0.00	day MW/min MW/min €/kWh €/kWh %/day
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A	day MW/min MW/min €/Wh €/Wh %/day %	150.00 77.78 33.33 #N/A #N/A	day MW/min MW/min €/kWh €/kWh %/day
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous	day MW/min MW/min €/Wh €/Wh %/day % Years	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00	day MW/min MW/min €/kWh %/day % Years
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous	day MW/min MW/min €/Wh €/Wh %/day %	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00	day MW/min MW/min €/kWh 6/kWh %/day % Years
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous	day MW/min MW/min €/Wh €/Wh %/day % Years	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00	day MW/min MW/min €/kWh %/day % Years
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds)	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes)	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months)
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds)	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes)	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months)
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds)	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months)
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh %/day % Years Long (months) Commercial
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability Downtime Reliability	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit days/year	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability Downtime	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit days/year	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research Range low	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit days/year	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days) Deployed Range high	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months) Commercial Unit days/year
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability Downtime Reliability	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit days/year % Unit	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days)	day MW/min MW/min €/kWh %/day % Years Long (months) Commercial Unit days/year % Unit
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research Range low	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit days/year % Unit %	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days) Deployed Range high	day MW/min MW/min €/kWh €/kWh %/day % Years Long (months) Commercial Unit days/year %
Operational time Ramp up speed Ramp down speed Cost projection (2020) Cost projection (2020) Self-discharge rate Roundtrip efficiency Lifetime Storage time Maturity of technology Reliability Downtime Reliability Safety of system	80.00 5.21 3.13 #N/A #N/A 0.00 #N/A 20.00 Instantaneous (seconds) Research Range low	day MW/min MW/min €/Wh €/Wh %/day % Years Fast (Minutes) Demonstration Unit days/year % Unit	150.00 77.78 33.33 #N/A #N/A 0.00 #N/A 20.00 Medium (Days) Deployed Range high	day MW/min MW/min €/kWh %/day % Years Long (months) Commercial Unit days/year % Unit

Requires cushion gas of 50 - 80%.

Gas has a maximum extraction rate to prevent damage to the storage structure

All calcuations assume a gas price of 0.25 €/m3

Sources used for this label

Clingendael International Energy Programme. (2006). The European Market for Seasonal Storage. Clingendael International Energy Programme.

Federal Energy Regulatory Commission, Current State and Issues Concerning Underground Natural Gas Storage, 2004

NaturalGas.org, http://naturalgas.org/naturalgas/storage/, Accessed 07/14/2014

Janssen, A., Lambregts, B., van der Sluis, . & Bos, C. (2012). A complemetary role for natural gas in the electric energy transition. *Energy Delta Gas*

Komduur, R. (2012). Dutch go from Swing Production to Storage. *European Energy Review*.

British Geological Survey, 2008. An appraisal of underground gas storage technologies and incidents, for the development of risk assessment methodology,

Gas Storage - Liquified Natural Gas

Technology name	Gas Storage - Liquified Natural Gas (LNG)
Description	
	LNG storage involves storing natural gas under high pressure to change its
	phase to liquid. LNG storage is used when high deliverability is required with a
	small working volume. Liquid gas storage is relatively expensive and is typically
	used to cover rare, winter peaks. LNG has a relatively high energy density and
	can be more easily transported than non-liquefied natural gas, assuming no
	pipelines are available.

Key characteristics	Lower Range	Unit	Upper Range	Unit
Discharge power	2.25	GW	5.60	GW
Charge power	125.00	MW	250.00	MW
Energy storage capacity	541.50	GWh	541.50	GWh
Energy density	1	MWh/m3	-	MWh/m3
Response time discharge	5.00	min	20.00	min
Response time charge	5.00	min	0.33	hours
Costs power	9.00	€/kW	9.00	€/kW
Costs energy	0.09	€/kWh	0.09	€/kWh

Energy carrier type	Electricity	Gas	Heat	Liquid fuel
Suitable applications	Frequency control	Hourly Balancing	Daily Balancing	Seasonal balancing
Transmission & Distribution	Black Start	Off-grid / Micro	Waste Heat	Off- to On-Peak
Congestion Relief		grid	Utilization	shifting & firming
Demand Shifting and Peak Reduction	Arbitrage	Reactive Power	Uninterruptible	Transportation
			Power Supply	

Sector for use	Utilities	Transmission &	Demand	Renewable
		distribution		integration

Expert properties	Lower Range	Unit	Upper Range	Unit
Operational time	12.00	hours	100.00	hours
Ramp up speed	112.50	MW/min	1,120.00	MW/min
Ramp down speed	6.25	MW/min	50.00	MW/min
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Cost projection (2020)	#N/A	€/Wh	#N/A	€/kWh
Self-discharge rate	0.00	%/day	0.00	%/day
Roundtrip efficiency	#N/A	%	#N/A	%
Lifetime	20.00	Years	20.00	Years
	Instantaneous			
Storage time	(seconds)	Fast (Minutes)	Medium (Days)	Long (months)

Maturity of technology	Research	Demonstration	Deployed	Commercial
Reliability	Range low	Unit	Range high	Unit
Downtime		days/year		days/year
Reliability	,	%		%

Safety of system

Sustainability	Range low	Unit	Range high	Unit
Recyclabilty		%		%
Environmental impact		kgCO2/kW		kgCO2/GW
Resource Depletion				

Sources used for this label	Clingendael International Energy Programme. (2006). The European Market for Seasonal Storage. Clingendael International Energy Programme.
	Federal Energy Regulatory Commission, Current State and Issues Concerning
	Underground Natural Gas Storage, 2004