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ABSTRACT: The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number

of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015)

a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that

time. With an increasing number of Full Electric Vehicles (FEVSs) on the market and a current subsidy scheme

for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on

charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging

behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV

to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transition

on charging infrastructure performance.
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1. INTRODUCTION

The Netherlands is known to be one of the frontrunners in EV
adoption and public charging infrastructure rollout (1, 2). During
early years of EV adoption (2012-2015), both PHEVs and FEVs
were subsidized, leading to large uptake of EVs by mostly lease
drivers (1-4). Due to the limited supply of EV models and almost
equal tax advantage at that time, most uptake was due to PHEVs
and only limited uptake was due to FEVs (such as Tesla and
Nissan Leaf) (5-7). In the year 2018 it is expected that many car
manufacturers will launch FEVs on the European market. This,
combined with the ending of many lease contracts, Charging Point
Operators (CPOs) and policy makers expect a transition of the
Dutch EV fleet from PHEV to FEV in the near future. This is
suppored by EV sales trends in the Netherlands which shows that
the last year more than 90% of EV sales have been FEVs.

This leads to the question of whether the current public charging
infrastructure is capable of accommodating the new composition
of the EV fleet. To answer this question a simulation model that

incorporates the differences in charging behavior between small

and large battery sized vehicles is required (8, 9), thereby
representing PHEVs and FEVs respectively.

Many simulation models exist today on the topic of EV(9-16).
However, to the best of our knowledge, those models are generally
not validated or only validated using small amounts of data (9, 17—
19). Furthermore, these models do not incorporate differences in
charging behavior related to battery size.

Therefore, in this research we examine the effects of the transition
of EV users from PHEV to FEV on charging behavior using real
world data (20). From this analysis a behavior transition equation
is developed to transform any PHEV user type to an equivilent
FEV user. Simulations with different FEV transitions were
performed in an Agent Based Model (ABM) that includes real
world charging data. From this conclusions regarding the effects

of charging infrastructure performance were drawn (6, 21, 22).

2. LITERATURE OVERVIEW
Research on the influence of battery size on the charging behavior
of EV users is still scarce. Zoepf et al. (23) conducted research

concerning PHEVs with some aspects of fuel consumption versus
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battery use for varying battery sizes. They concluded that fast

chargers are of little added value for users with a small battery.

Wei etal. (24) present a tool to estimate fast charging demand and
sample results on a current and future EV scenario. Their results
show the interaction of battery size, frequency of charging, and
energy needed per charging transaction.

While energy per charging transaction increases with battery size,
the overall electricity demand per vehicle decreases with larger
batteries. This is due to less charging transactions with more kWh
charged per transaction. A reason for this may be that that larger
battery FEVs tend to reach their destinations more often which
leads to less transactions, while if needed the transaction size is
larger due to the larger battery size.

They use long-distance data and provide a table with interaction
between battery size and number of charge scenario results. They
consider battery sizes of 80, 150 and 300 miles and show that the
demand in kWh from fast charging per vehicle decreases as the
battery size increases. The results show how battery size may
interact with charging behavior, particularly the share that will be
fastcharged versus regular charging; but does not shed light on the
actual charging behavior on public (slow) chargers which is focus
in this study.

Franke and Krems (8) performed a study that focuses on user-
battery interaction of EV users based on the concepts of how
mobile phone users charge their phones. While this research
provides results on how EV users cope with battery size it does not
provide insights usable in simulations.

Tal et al. (25) present a survey of more than 3500 PHEV owners
conducted in California in May and June 2013. Their findings
include the following. There is a low correlation between (i) the
need for charging and (ii) actual charging transactions for low
battery PHEVs mainly due to public charging availability as
reported by the drivers. PHEV drivers with higher battery capacity
and FEV drivers charge more often and are more positive on
charging opportunities in locations where low battery PHEVsdid
not charge. They suggest that users with a low battery PHEV may

not have a high enough incentive to charge their car often.

Concluding, while interest is clearly being shown in the influence
of battery sizes and car types on the behavior of EV users, little
research is done in this area. Moreover, a real understanding of the
effects of battery size on total charging infrastructure performance

has not been found in literature so far.

3. METHOD
This research builds upon the Simulation of Electric Vehicles
Activity (SEVA) model, a data driven agent-based simulation
model (currently under peer review). At initialization of this
simulation model, the behavior of the agents in terms of
connection and disconnection distributions is generated from
transaction data of the agents themselves (26). The dataset
contains more than 5.6 million recordson public charging points in
4 big cities in the Netherlands and the Metropolitan Region
Amsterdam (MRA) (26). To assure generalization, special user
types such as car sharing cars and taxis are filtered out at the
initialization of the model. Next, each EV user needs to have at
least 20 transactions en a local area and at least 10 at one Charging
Point (CP).
The geospatial behavior of an agent is captured by defining
clusters nearby of charging points, where the agent displays a
similar activity pattern. Each cluster has a geospatial center based
on the weighted average of the transactions at the CPs in a cluster.
Note that both the centers and the clusters are uniquely defined for
each agent.
To simulate the change in behavior due to a change in batteries, a
clear understanding is needed as to how the connection and
disconnection distributions change. It is also arguable that the
clusters of an agent may change as their batteries change. A user
might have fewer or more regular charging locations depending on
its battery size. However, it also seems likely that a user would
keep some, if not all, of its centers, as the user still drives the same
routes and visits the same locations when it gets another car.
To decide exactly which aspects of the agents are crucial in
capturing the change of battery size, a data analysis focused on the
differences in batteries was performed. Next, based on behavioral
properties on charging data, three types of EV-types were distilled
from the data: (1) PHEV, (2) small battery FEV (low FEV) and (3)
large battery FEV (high FEV). The differences in charging
behavior were made explicit for modelling by drawing
distributions on connection and disconnection to charging points
and location-based behavior.
In the next step, a Factor Transform (FT) function was developed
to apply the EV transition to behavior properties. Subsequently,
the FT function was implemented in the ABM to simulate
transformations of the current EV fleet from PHEVs and small
Battery FEVs to large battery FEVs. Finally, simulations were
performed with different transition probabilities to reveal insight
in to different future scenarios. From the data derived from

simulations effects on typical Key Performance Indicators (KPIs)

Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved



of charging infrastructure were analyzed (27). This led to
conclusions and recommendations for policy makers and CPOs.
4. RESULTS

4.1. Battery Size Analysis

To identify differences in behavior between PHEV and FEV and
the effect of battery size, a distinction between these types of EVs
is required. A large amount of the EV users in the dataset can be
classified as either owning a PHEV or a FEV with a classification
method that relates maximum transaction size to EV car type (28).
The classifier considers the largest transaction volume and
charging speed of an EV user and compares this with known
properties of EV models to classify a user. In case of doubt the
user gets the label “unknown”. These unknown EVs are filtered
out in this analysis and the simulation model.To determine the
battery sizes of the EV users in the dataset the transaction volumes
(in kWh) within the dataset were used. For each user, this may be
calculated by taking the maximum transaction volume, assuming
that a user will at least once charge from 0% to 100% SOC, yet
some caution is required. Different cars can be used with the same
charging card ID, because a charge card is not bound to a car but
to a user. For instance, an EV user may incidentally use its
charging card to e.g. a hired car or EV from a colleague.
Therefore, it was decided not to set the battery size of a user the
maximum kWh observed in all charging transactions, but a
percentile to filter out the top percentage of the transactions. A
deeper analysis revealed that the 98th percentile there was a good
balance between filtering outliers while not filtering too many

regular transactions.

Based on the results of the classifier and the battery size
calculation, the spread of battery size of PHEV and FEV of (2,172)
users present in the simulation model can now be displayed, see
Figure 1 (PHEV) and Figure 2 (FEV). The FEV users are clearly
split into two groups, one with low and one with high battery
capacity, while the PHEV users are all close to a mean of 10 kWh.
The outlier of 30kWh may be a wrongly identified FEV (e.g. the
BMW i3 with large battery).
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Fig. 1 The spread of battery capacity for all (1727) PHEV users
present as valid agents in the SEVA model.
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Fig. 2 The spread of battery capacity for all (445) FEV users
present as valid agents in the SEVA model.

While there are no models available with battery sizes between 33
kWh (BWM i3) and 70 kWh (Tesla Model S) in the period up to
December 2016 we do see some occurrences of battery sizes
between those values in Figure 2. This is caused by users that
mostly charge their car before the battery is fully empty. Given
that the actual battery size is unknown in the available dataset and
that the behavioral properties of the EV users relate to the
transaction volume rather than the battery size, we decided not to
rescale the Figures 1 and 2 to known EV battery sizes.

Based the current results, the users were split in the dataset into
three groups based on their car type and battery size. Namely
PHEV (1727 users), low FEV (283 users) with low battery
capacity (up to 33 kWh) and high FEV (162 users) with high
battery capacity (over 33 kWh). The low FEV group includes
models such as Nissan Leaf; the category over 33kWh includes

Tesla’s.

3.2. Geospatial Charging Behavior for Different Battery Sizes
In this section the differences that can be found between PHEVS,
low FEVs and high FEVs are described and tested on significance.
First the differences in geospatial behavior is analyzed. This
contains the differences in number of centers that this user type on
average has, which can be related to the number of locations where
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EV users typically charge. Next, the clusters size being the number
of CPs of a center is analyzed. Last, given that the cluster size
relates to the distances of CPs in the cluster, the walking
preparedness is also considered in this analysis. This is defined as
the maximum distance between two CPs in a cluster.
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Fig. 3 Comparison of number of centers between the three

battery categories
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g. 4 Comparison of number of Charging Points per center
between the three battery categories
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Fig. 5 Comparison of walking preparedness between the three
battery categories

In Figures 3 to 5 the mean and 95% confidence intervals of the
number of centers, number of CPs per cluster and walking
preparedness is shown.

For each combination seen in these figures we performed a
twosample independent t-test assuming unequal variances
between the two samples. The p-values resulting from these tests
can be found in Table 1, where significant P values are emphasized
in green.

Possible explanations for the found differences are the following.
As PHEVs have less incentive to charge often, they are not
required to search alternative CPs when their preferred CP is

occupied. This could be a reason that the walking preparedness

and the number of CPs per cluster are lower for PHEVs. The low
FEVs have more centers than the other two categories, possibly
because in this category the need to charge is highest, thus they
seek alternative charge locations.

FEV (low) & FEV (high) & FEV (low) &

PHEV PHEV FEV (high)
Number of centers 0.001 0.902 0.085
Number of CPs per center 0.004 0.001 0.493
Walking preparedness 0.000 0.212 0.297

Table 1 For the three geospatial variables in the first column a

two-sided t-test for each combination is carried out.

From this we conclude that regarding geospatial behavior, most
differences are present between low battery FEV and PHEV.
Given that the simulation is setup to transform the PHEVs to high
battery FEV, the only factor to transform is the number of CPs per

center.

3.3. Temporal Charging Behavior for Different Battery Sizes
The temporal charging behavior is based on the connection and
disconnection distribution of an agent given per cluster of CPs.
Before analysis, a cutoff on extremely short sessions less than 5
minutes and long connection durations of 5 days and
disconnection duration of 40 days was performed to filter outliers
and/or errors. Afterwards, the mean behavior per unit time was
calculated by polynomial fit.

Mean Connection Durations

0.030
0.025 ,i —— PHEV
’ —— Low FEV
0.020 High FEV
0.015
0.010 |
0.005
0.000 e —
0.0 0.5 10 15 2.0 25 3.0
Connection Duration (days)
0.010 Differences Connection Durations
0.005
0.000
-0.005
Low FEV to High FEV
-0.010 —— PHEV to Low FEV
—— PHEV to High FEV
-0.015
0.0 0.5 1.0 15 20 25 3.0

Connection Duration (days)
Fig. 6 The mean connection duration distributions for the
different battery groups, where (a) shows the fitted distributions
and (b) the differences between those distributions.
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In Figure 6 the mean connection duration distributions for each of
the battery categories are displayed. From this it is found that the
high FEV users have a much lower first peak around 0.05 days
(first hour), which suggests that high battery users are less likely
to connect for (very) short durations. This may be explained by the
idea that high battery EVs have a longer driving range and as such
do not need to stop and charge for a short time in between driving
and may prefer to wait and charge for a more solid duration. It can
also be observed that low FEV and PHEV categories have a peak
at both 0.35 and 0.55. We hypothesize that the 0.35 peak is due to
the users charging at work (roughly 8 hours), while the 0.55 peak
might point to users charging at home overnight (roughly 13
hours) also found in (27, 29). This peak is absent in the high FEV
group, which may indicate that large battery FEVs may not
specifically charge at work as much as PHEVs and low battery
FEVs.

0.06 Arrival Distributions
— PHEV

0.05 Low FEV /\

0.04 High FEV :

Fig. 7 The arrival time distributions for the three different groups

The arrival time distributions indeed indicate a lower number of
high FEV users that start their charging session at typical daytime
or office hours.
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Fig. 8 The mean disconnection duration distributions for the
different battery groups, where (a) shows the fitted distributions
and (b) the differences between those distributions.

In Figure 8 the mean disconnection duration, being the time
between two subsequent sessions, distributions is displayed. Note
that the high FEVs shows longer disconnection durations. High
FEVs are found to have 49% of their disconnections longer than
more than a day, while both PHEVs and low FEVs this is only
30%. The figure shows peaks at 0.4, 1.4 and 2.4 in the high FEV
pattern, indicating a disconnection of roughly nine hours plus zero
to two days. This indicates that high FEV users tend to skip
transactions and connect at the same time a day or more later. This
corresponds with the finding that high FEVs have a lower mean
number of weekly sessions than the other categories.

For the lower battery categories, the highest peak is for very small
disconnection durations of less than an hour. This may indicate
that those users most often charge again right after reaching their
destination. A deeper analysis of the differences between the
distributions using the Hellinger distance showed, that the high
battery FEV tend to differ more from the other two categories by
disconnection than by connection duration. Low FEVs and PHEVs
are very similar in both disconnection and connection patterns.
Next, high FEVs differ from the other two groups by less charging
transactions, which on average are longer and less frequent.

3.4. Transformation of EV user behavior

Having a clear insight in the differences in charging behavior, a
transformation function can be developed that  enables
transforming a user from one category to another. And then
implementing this in the simulation model to evaluate how this
plays out in the utilization of charging infrastructure. The SEVA
model used in this research, simulates the behavior of an agent
mainly by the use of the disconnection and connection duration
distributions. The combination distributions of both results in

arrival patterns and the number of weekly sessions. Therefore, the
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connection and disconnection distributions are the main subject to
the transformation.

However, in this research, we choose not to consider the
differences in center characteristics with the transformation for a
reason. Namely, the differences, although significant, are a lot
smaller than other differences and the manipulation of centers is
not straightforward, since they are directly pulled from the dataset
with the clustering of CPs.

For the Factor Transformation (FT) we use the fitted means for the
connection and disconnection distributions as seen in Figure 6 and
Figure 7. The transformation can be defined by the following
equation:

v; - :T if 0; > 0

w; = i

0, otherwise ¢ = 0.

Eq. 1 Factor Transformation function

Here w; is the new value bin i will take, v; is its old value and ¢;
and o; are the values in bin i for the target distribution and the
origin distribution respectively. The term 3 can be seen as the
transform factor of the i-th bin. For each user transformation from
PHEV to high FEV, t would represent the high FEV

(dis)connection duration distribution and o the PHEV distribution.

4. SIMULATION SETUP

4.1. Extension of SEVA model

To implement the transformation of an agent from one battery
category to another, the SEVA model needs several upgrades.
First, agents should now have an attribute containing information
on whether the agent is a PHEV, low FEV or high FEV. Second,
a transform probability which defines for each agent the
probability of transforming from PHEV to FEV is added as

parameter of the model.

To implement the transaction volume in the model for a session of
an agent, the whole population of a single battery category is used
as predictive information on transaction volume for an agent
within this group.

The transaction volume is modelled as follows. For the whole
category a heatmap of probability of transaction given the
connection duration is setup, see Figure 8. During simulation the

model samples a charged amount belonging to the simulated

connection duration according to the probabilities at this

connection duration.

100 High FEV
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Fig. 9 Heatmap of transaction volume versus connection duration

4.2. Simulation metrics

The purpose of this study is to observe the change in demand on
the charging infrastructure given the transition of battery size.
Previous research revealed important key performance indicators
on charging infrastructure for various stakeholders (27, 30). The
following indicators were chosen to analyze from the simulation
results; (1) Average connection duration per CP per week;(2)
Average number of unique users per CP per week; (3) Average
number of charging transactions per CP per week; (4) Average
kWh charged per CP per week.

4.3. Simulation procedure

The simulation procedure is setup to research the effects of on the
demand on the charging infrastructure as a transition takes place
from a population fully consisting of PHEVs to one fully
consisting of large battery FEVs. As such, the simulation contains
the 1727 PHEV agents and is performed in five simulation runs of
one year with those agents, keeping track of the system measures.
Each simulation run every agent has a probability to be
transformed to a high battery FEV at the start of the simulation.

This percentage varies from 0% to 100% with a step size of 20%.

5. SIMULATION RESULTS
The values of the system measures in the case study are plotted
against the probability to transform in Figure 10-14. The error bars
indicate the variance over al CPs and all runs.
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There is a significant decrease (17%) in the number of charging
transactions per week and the connection duration per week, which
is as expected. This also confirms that the FT of disconnection and
connection distributions does capture the difference in the number
of charge transactions per week. The number of users per week
also decreases, but not significantly over the scope of this
transformation (0.7%). This decrease is not as strong as expected,
which can be explained by the fact that the model does not
decrease the number of CPs to choose from with the
transformation. Each CP still has the same chance of being
selected as it had before the transformation. The increase shown
could be due to an agent having to deviate from its first choice less
often, since CPs are less often occupied. Lastly, the total and the
average per CP per week on charged kWh increase significantly
(80% and 70% respectively) for every step. The reason for this
may be found in the idea that PHEVSs tend to use their full battery
each day and their transactions is limited by battery size rather than
daily trip size, whereas FEVs do not have this limitation.

6. CONCLUSION
This study presented a simulation model for the transition of EV
user charging behavior. The model is an extension of the existing
SEVA model (currently under peer review). The transformation of
EV user charging behavior due to increase of battery size was

performed based on data analysis of actual EV users’ transactions.

From this case study we see the utility of the CPs, and thus of the
charging infrastructure, increases as the battery size of the
population increases. The connection times per CP decreases,
while the kWh charged at those same poles increases. This would
indicate that, as a transition to higher batteries takes place, first the
efficiency of charging infrastructure increases, and second less
charging infrastructure would be needed to facilitate the EV
population.

The number of unique users per CP and the decrease in connection
times would also be positive for EV users, as this implies that the
CPs are available more often. Yet, the current transformation
function could be improved on the CP selection process, which

may affect this metric as well.

There are some drawbacks as well. As we have seen, high FEVs
charge more at night times and this could cause a higher peak on
the energy demand as a higher fraction of the population starts
charging at night. However, this peak might be shifted towards a

later time using smart charging as generally not the entire night is
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needed for a full recharge. Implementation of smart charging in a
future research and extension of this model would therefore be a

logical next step.

Overall, the results of the case study indicate a decrease in demand
on the charge infrastructure as battery sizes increase and the
number of EVs stays the same, which is beneficial for most

involved stakeholders.

AKNOWLEDGEMENTS
This work is part of the doctoral grant for teachers with project
number 023.009.011, which is (partly) financed by the
Netherlands Organization for Scientific Research (NWO). The
data is provided by the G4 cities of the Netherlands. Finally, this
research is part of the IDOLAAD project funded by Stitching
Innovatie Alliantie (SIA).

CONTRIBUTIONS
JRH, ML initialized and designed this research, 1V conducted the
research and analysis, IV wrote the code, JRH and ML supervised
the research, JRH and 1V wrote the paper, ML and RvdH edited
the paper.
REFERENCES
“Cijfers RVO.nl”.

(1) RVO. elektrisch

http://www.rvo.nl/onderwerpen/duurzaam-

vervoer |

ondernemen/energie-en-milieu-innovaties/elektrisch-
rijden/stand-van-zaken/cijfers, (& 2016-04-28).

(2) Van Den Hoed, R., Helmus, J. R., De Vries, R., Bardok,
D., Hoed, R. Van Den, Helmus, J. R., Vries, R. De,
Bardok, D. Data analysis on the public charge
infrastructure in the city of Amsterdam. 2013 World
Electric Vehicle Symposium and Exhibition, EVS 2014.
2014, p. 1-10.

3) Langbroek, Joram H. M., Franklin, Joel P., Susilo, Yusak
O. The effect of policy incentives on electric vehicle
adoption. Energy Policy. 2016, vol. 94, p. 94-103.
http://www.sciencedirect.com/science/article/pii/S03014
21516301550, (%1 2017-06-01).

(4) Hwang, Sang-kyu, Korea, South. “Comparative Study on
Electric Vehicle Policies between Korea and EU

EVS28

Symposium and Exhibition. 2015.

Countries”. International Electric Vehicle

(5) “EV Database: een overzicht van alle elektrische auto’s”.
https://ev-database.nl/, (Z: % 2017-12-20).
(6) Rivera, M. Vargas, Hoed, R. Van Den, Helmus, J.

U]

®)

9)

(10)

(11)

(12)

(13)

(14)

Charging in the city of Amsterdam : Data Monitoring of
charge point performance. 2014, no. December, p. 1-9.
Wolbertus, Rick, van den Hoed, Robert. Benchmarking
Charging Infrastructure Utilization. 2016, p. 1-15.
Franke, Thomas, Krems, Josef F. Understanding

charging behaviour of electric vehicle users.
Transportation Research Part F: Traffic Psychology and
2013, vol. 21, p. 75-89.
http://www.sciencedirect.com/science/article/pii/S13698

47813000776, (%14 2016-01-11).

Behaviour.

Sweda, Timothy, Klabjan, Diego. An agent-based
decision support system for electric vehicle charging
infrastructure deployment. 2011 IEEE Vehicle Power and
2011, p. 15
http://ieeexplore.ieee.org/Ipdocs/epic03/wrapper.htm?ar
number=6043201.

Hess, Andrea, Malandrino, Francesco, Reinhardt, Moritz

Propulsion Conference.

Bastian, Casetti, Claudio, Hummel, Karin Anna, Barcel6-
Ordinas, Jose M. Optimal deployment of charging
stations for electric vehicular networks. Proceedings of
the first workshop on Urban networking. 2012, p. 1-6.
http://dl.acm.org/citation.cfm?doid=2413236.2413238.
Zhu, Zhi-Hong, Gao, Zi-You, Zheng, Jian-Feng, Du,
Hao-Ming. Charging station location problem of plug-in
electric vehicles. Journal of Transport Geography. 2016,
vol. 52, p. 11-22.
https://www.sciencedirect.com/science/article/pii/S0966
692316000156, (£ ¥ 2018-05-01).

Uhrig, Martin, Weil3, Lennart, Michael,
Leibfried, Thomas. “E-Mobility in car parks — Guidelines

Suriyah,

for charging infrastructure expansion planning and
operation based on stochastic simulations”. EVS28
International Electric Vehicle Symposium and Exhibition.
2015, p. 1-12.

Xi, Xiaomin, Sioshansi, Ramteen, Marano, Vincenzo.
Simulation—optimization model for location of a public
electric vehicle charging infrastructure. Transportation
Research Part D: Transport and Environment. 2013, vol.
22, p. 60-69.
http://www.sciencedirect.com/science/article/pii/S13619
20913000345, (% 2016-10-06).

Yi, Zonggen, Bauer, Peter H. Optimization models for
placement of an energy-aware electric vehicle charging
infrastructure. Transportation Research Part E: Logistics
and Transportation Review. 2016, vol. 91, p. 227-244.

Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved



(15)

(16)

A7)

(18)

(19)

(20)

(21)

https://www.sciencedirect.com/science/article/pii/S1366
554515302520, (£ 2018-05-01).

Momtazpour, Marjan, Butler, Patrick, Hossain, M.
Shahriar, Bozchalui, Mohammad C., Ramakrishnan,
Naren, Sharma, Ratnesh. “Coordinated clustering
algorithms to support charging infrastructure design for
electric vehicles”. Proceedings of the ACM SIGKDD
International Workshop on Urban Computing -
UrbComp ’12. 2012, p- 126.
http://dl.acm.org/citation.cfm?doid=2346496.2346517,
(%1 2015-11-18).

Paffumi, Elena, De Gennaro, Michele, Martini, Giorgio,
Scholz, Harald, Gennaro, Michele De, Martini, Giorgio.
Assessment of the potential of electric vehicles and
charging strategies to meet urban mobility requirements.
Transportmetrica A: Transport Science. 2015, vol. 11, no.
January 2015, p. 37-41.
http://dx.doi.org/10.1080/23249935.2014.913732.
Karbowski, Dominik, Kim, Namwook, Rousseau,
Aymeric. “Route-Based Energy Management for PHEV :
A Simulation Framework for Large-Scale Evaluation
Optimal Energy Management of XxEVs Needs Trip
Prediction Vehicle energy use can be reduced through
application of control theory or fine tuning: o ECMS:
EVS28

Symposium and Exhibition. 2015.

Equivalen”. International  Electric Vehicle
Lindgren, Juuso, Lund, Peter D. Identifying bottlenecks
in charging infrastructure of plug-in hybrid electric
vehicles through agent-based traffic simulation.
International Journal of Low-Carbon Technologies. 2015,
110-118.
http://ijlct.oxfordjournals.org.proxy.uba.uva.nl:2048/con

tent/10/2/110, (1% 2015-12-08).

vol. 10, no. 2, p.

Xydas, Erotokritos, Marmaras, Charalampos, Cipcigan,
Liana M. A multi-agent based scheduling algorithm for
adaptive electric vehicles charging. Applied Energy.
2016, vol. 177, p. 354-365.
http://www.sciencedirect.com/science/article/pii/S03062
61916306286, (%I 2016-11-04).

University of applied sciences Amsterdam. “IDO-laad”.
http://www.idolaad.nl/, (£ & 2017-04-19).

Helmus, J., van den Hoed, R. Key Performance Indicators
of Charging Infrastructure. EVS 2016 - 29th International
Electric Vehicle Symposium. 2016, p. 1-9.

(22)

(23)

(24)

(25)

(26)

@7)

(28)

(29)

(30)

Performance, Improving Infrastructure. Measuring and
Improving Infrastructure Performance. 1996, ISBN978-
0-309-05098-2. http://www.nap.edu/catalog/4929.

Keith, David,
Chernicoff, William. Charging Choices and Fuel

Zoepf, Stephen, MacKenzie, Don,
Displacement in a Large-Scale Demonstration of Plug-In
Hybrid Electric Vehicles.
Record: Journal of the Transportation Research Board.
2013, vol. 2385, p. 1-10.
http://trrjournalonline.trb.org/doi/10.3141/2385-01.

Ji, Wei, Nicholas, Michael, Tal, Gil. Electric Vehicle Fast

Transportation Research

Charger  Planning for  Metropolitan  Planning
Organizations. Transportation Research Record: Journal
of the Transportation Research Board. 2015, vol. 2502, p.
134-143.
http://trrjournalonline.trb.org/doi/10.3141/2502-16,
(& 2018-07-02).

Tal, Gil, Nicholas, Michael A., Davies, Jamie, Woodjack,
Justin. Charging Behavior Impacts on Electric Vehicle
Miles Traveled. Transportation Research Record: Journal

of the Transportation Research Board. 2014, vol. 2454,

no. 1, p. 53-60.
http://journals.sagepub.com/doi/10.3141/2454-07, (Z 4
2018-07-02).

Helmus, Jurjen, van den Hoed, Robert, Simone, Maase.
RAAK-PRO Projectvoorstel IDOLaad. Amsterdam,
University of Applied Sciences Amsterdam, 2014.
Helmus, J. R., Spoelstra, J. C., Refa, N., Lees, Michael
H., van den Hoed, Robert. Assessment of public charging
infrastructure push and pull rollout strategies: the case of
the Netherlands. Energy Policy. 2018, vol. 121, p. 35-47.
https://www.sciencedirect.com/science/article/pii/S0301
421518303999, (% 2018-06-29).

van den Hoed, Robert, Helmus, Jurjen, Martijn, Kooij.
Laadgedrag van Plugln Hybride Elektrische V oertuigen
op publieke laadpunten. 2016, 1-23p.
http://www.idolaad.nl/gedeelde-
content/publicaties/publicaties-algemeen/laadgedrag-
van-plugin-hybride-ev.html.

Helmus, Jurjen, Van Den Hoed, Robert. “Unraveling
User Type Characteristics : Towards a Taxonomy for
Charging Infrastructure”. EVS28 International Electric
Vehicle Symposium and Exhibition. 2015, p. 1-16.
Parmenter, David. Key Performance Indicators (KPI):

Developing, Implementing, and Using Winning KPIs.

Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved



2010, 320p., ISBN0470593199.
http://scholar.google.com/scholar?hl=en&btnG=Search
&g=intitle:No+Title#0%5Cnhttp://books.google.com/bo
oks?hl=fr&Ir=&id=sLP_ipWrfssC&pgis=1.

Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved



