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ABSTRACT: The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number 

of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) 

a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that 

time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme 

for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on 

charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging 

behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV 

to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transition 

on charging infrastructure performance. 
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1. INTRODUCTION 

The Netherlands is known to be one of the frontrunners in EV 

adoption and public charging infrastructure rollout (1, 2). During 

early years of EV adoption (2012-2015), both PHEVs and FEVs 

were subsidized, leading to large uptake of EVs by mostly lease 

drivers (1–4). Due to the limited supply of EV models and almost 

equal tax advantage at that time, most uptake was due to PHEVs 

and only limited uptake was due to FEVs (such as Tesla and 

Nissan Leaf) (5–7). In the year 2018 it is expected that many car 

manufacturers will launch FEVs on the European market. This, 

combined with the ending of many lease contracts, Charging Point 

Operators (CPOs) and policy makers expect a transition of the 

Dutch EV fleet from PHEV to FEV in the near future. This is 

suppored by EV sales trends in the Netherlands which shows that 

the last year more than 90% of EV sales have been FEVs.  

This leads to the question of whether the current public charging 

infrastructure is capable of accommodating the new composition 

of the EV fleet. To answer this question a simulation model that 

incorporates the differences in charging behavior between small 

and large battery sized vehicles is required (8, 9), thereby 

representing PHEVs and FEVs respectively. 

Many simulation models exist today on the topic of EV(9–16). 

However, to the best of our knowledge, those models are generally 

not validated or only validated using small amounts of data (9, 17–

19). Furthermore, these models do not incorporate differences in 

charging behavior related to battery size.  

Therefore, in this research  we examine the effects of the transition 

of EV users from PHEV to FEV on charging behavior using real 

world data (20). From this analysis a behavior transition equation 

is developed to transform any PHEV user type to an equivilent 

FEV user.  Simulations with different FEV transitions were 

performed in an Agent Based Model (ABM) that includes real 

world charging data. From this conclusions regarding the effects 

of charging infrastructure performance were drawn (6, 21, 22).  

 

2. LITERATURE OVERVIEW 

Research on the influence of battery size on the charging behavior 

of EV users is still scarce. Zoepf et al. (23) conducted research 

concerning PHEVs with some aspects of fuel consumption versus 
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battery use for varying battery sizes. They concluded that fast 

chargers are of little added value for users with a small battery.  

 

Wei et al. (24)  present a tool to estimate fast charging demand and 

sample results on a current and future EV scenario. Their results 

show the interaction of battery size, frequency of charging, and 

energy needed per charging transaction.  

While energy per charging transaction increases with battery size, 

the overall electricity demand per vehicle decreases with larger 

batteries. This is due to less charging transactions with more kWh 

charged per transaction. A reason for this may be that that larger 

battery FEVs tend to reach their destinations more often which 

leads to less transactions, while if needed the transaction size is 

larger due to the larger battery size.  

They use long-distance data and provide a table with interaction 

between battery size and number of charge scenario results. They 

consider battery sizes of 80, 150 and 300 miles and show that the 

demand in kWh from fast charging per vehicle decreases as the 

battery size increases. The results show how battery size may 

interact with charging behavior, particularly the share that will be 

fastcharged versus regular charging; but does not shed light on the 

actual charging behavior on public (slow) chargers which is focus 

in this study. 

Franke and Krems (8) performed a study that focuses on user-

battery interaction of EV users based on the concepts of how 

mobile phone users charge their phones. While this research 

provides results on how EV users cope with battery size it does not  

provide insights usable in simulations.  

Tal et al. (25) present a survey of more than 3500 PHEV owners 

conducted in California in May and June 2013. Their findings 

include the following. There is a low correlation between (i) the 

need for charging and (ii) actual charging transactions for low 

battery PHEVs mainly due to public charging availability as 

reported by the drivers. PHEV drivers with higher battery capacity 

and FEV drivers charge more often and are more positive on 

charging opportunities in locations where low battery PHEVsdid 

not charge. They suggest that users with a low battery PHEV may 

not have a high enough incentive to charge their car often.  

 

Concluding, while interest is clearly being shown in the influence 

of battery sizes and car types on the behavior of EV users, little 

research is done in this area. Moreover, a real understanding of the 

effects of battery size on total charging infrastructure performance 

has not been found in literature so far.  

 

3. METHOD 

This research builds upon the Simulation of Electric Vehicles 

Activity (SEVA) model, a data driven agent-based simulation 

model (currently under peer review). At initialization of this 

simulation model, the behavior of the agents in terms of 

connection and disconnection distributions is generated from 

transaction data of the agents themselves (26). The dataset 

contains more than 5.6 million recordson public charging points in 

4 big cities in the Netherlands and the Metropolitan Region 

Amsterdam (MRA) (26). To assure generalization, special user 

types such as car sharing cars and taxis are filtered out at the 

initialization of the model. Next, each EV user needs to have at 

least 20 transactions en a local area and at least 10 at one Charging 

Point (CP).  

The geospatial behavior of an agent is captured by defining 

clusters nearby of charging points, where the agent displays a 

similar activity pattern. Each cluster has a geospatial center based 

on the weighted average of the transactions at the CPs in a cluster. 

Note that both the centers and the clusters are uniquely defined for 

each agent.  

To simulate the change in behavior due to a change in batteries, a 

clear understanding is needed as to how the connection and 

disconnection distributions change. It is also arguable that the 

clusters of an agent may change as their batteries change. A user 

might have fewer or more regular charging locations depending on 

its battery size. However, it also seems likely that a user would 

keep some, if not all, of its centers, as the user still drives the same 

routes and visits the same locations when it gets another car.  

To decide exactly which aspects of the agents are crucial in 

capturing the change of battery size, a data analysis focused on the 

differences in batteries was performed. Next, based on behavioral 

properties on charging data, three types of EV-types were distilled 

from the data: (1) PHEV, (2) small battery FEV (low FEV) and (3) 

large battery FEV (high FEV). The differences in charging 

behavior were made explicit for modelling by drawing 

distributions on connection and disconnection to charging points 

and location-based behavior.  

In the next step, a Factor Transform (FT) function was developed 

to apply the EV transition to behavior properties. Subsequently, 

the FT function was implemented in the ABM to simulate 

transformations of the current EV fleet from PHEVs and small 

Battery FEVs to large battery FEVs. Finally, simulations were 

performed with different transition probabilities to reveal insight 

in to different future scenarios. From the data derived from 

simulations effects on typical Key Performance Indicators (KPIs) 
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of charging infrastructure were analyzed (27). This led to 

conclusions and recommendations for policy makers and CPOs. 

4. RESULTS 

 

4.1. Battery Size Analysis 

To identify differences in behavior between PHEV and FEV and 

the effect of battery size, a distinction between these types of EVs 

is required. A large amount of the EV users in the dataset can be 

classified as either owning a PHEV or a FEV with a classification 

method that relates maximum transaction size to EV car type (28).  

The classifier considers the largest transaction volume and 

charging speed of an EV user and compares this with known 

properties of EV models to classify a user. In case of doubt the 

user gets the label “unknown”. These unknown EVs are filtered 

out in this analysis and the simulation model.To determine the 

battery sizes of the EV users in the dataset the transaction volumes 

(in kWh) within the dataset were used. For each user, this may be 

calculated by taking the maximum transaction volume, assuming 

that a user will at least once charge from 0% to 100% SOC, yet 

some caution is required. Different cars can be used with the same 

charging card ID, because a charge card is not bound to a car but 

to a user. For instance, an EV user may incidentally use its 

charging card to e.g. a hired car or EV from a colleague.  

Therefore, it was decided not to set the battery size of a user the 

maximum kWh observed in all charging transactions, but a 

percentile to filter out the top percentage of the transactions. A 

deeper analysis revealed that the 98th percentile there was a good 

balance between filtering outliers while not filtering too many 

regular transactions.  

 

Based on the results of the classifier and the battery size 

calculation, the spread of battery size of PHEV and FEV of (2,172) 

users present in the simulation model can now be displayed, see 

Figure 1 (PHEV) and Figure 2 (FEV). The FEV users are clearly 

split into two groups, one with low and one with high battery 

capacity, while the PHEV users are all close to a mean of 10 kWh. 

The outlier of 30kWh may be a wrongly identified FEV (e.g. the 

BMW i3 with large battery). 

 

Fig. 1  The spread of battery capacity for all (1727) PHEV users 

present as valid agents in the SEVA model.

 

Fig. 2  The spread of battery capacity for all (445) FEV users 

present as valid agents in the SEVA model. 

 

While there are no models available with battery sizes between 33 

kWh (BWM i3) and 70 kWh (Tesla Model S) in the period up to 

December 2016 we do see some occurrences of battery sizes 

between those values in Figure 2. This is caused by users that 

mostly charge their car before the battery is fully empty. Given 

that the actual battery size is unknown in the available dataset and 

that the behavioral properties of the EV users relate to the 

transaction volume rather than the battery size, we decided not to 

rescale the Figures 1 and 2 to known EV battery sizes.  

Based the current results, the users were split in the dataset into 

three groups based on their car type and battery size. Namely 

PHEV (1727 users), low FEV (283 users) with low battery 

capacity (up to 33 kWh) and high FEV (162 users) with high 

battery capacity (over 33 kWh). The low FEV group includes 

models such as Nissan Leaf; the category over 33kWh includes 

Tesla’s.  

 

3.2. Geospatial Charging Behavior for Different Battery Sizes 

In this section the differences that can be found between PHEVs, 

low FEVs and high FEVs are described and tested on significance. 

First the differences in geospatial behavior is analyzed. This 

contains the differences in number of centers that this user type on 

average has, which can be related to the number of locations where 
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EV users typically charge. Next, the clusters size being the number 

of CPs of a center is analyzed. Last, given that the cluster size 

relates to the distances of CPs in the cluster, the walking 

preparedness is also considered in this analysis. This is defined as 

the maximum distance between two CPs in a cluster.  

 

Fig. 3 Comparison of number of centers between the three 

battery categories 

 

Fig. 4 Comparison of number of Charging Points per center 

between the three battery categories 

 

Fig. 5 Comparison of walking preparedness between the three 

battery categories 

In Figures 3 to 5 the mean and 95% confidence intervals of the 

number of centers, number of CPs per cluster and walking 

preparedness is shown.  

For each combination seen in these figures we performed a 

twosample independent t-test assuming unequal variances 

between the two samples. The p-values resulting from these tests 

can be found in Table 1, where significant P values are emphasized 

in green. 

Possible explanations for the found differences are the following. 

As PHEVs have less incentive to charge often, they are not 

required to search alternative CPs when their preferred CP is 

occupied. This could be a reason that the walking preparedness 

and the number of CPs per cluster are lower for PHEVs. The low 

FEVs have more centers than the other two categories, possibly 

because in this category the need to charge is highest, thus they 

seek alternative charge locations.  

 

Table 1 For the three geospatial variables in the first column a 

two-sided t-test for each combination is carried out.  

 

From this we conclude that regarding geospatial behavior, most 

differences are present between low battery FEV and PHEV. 

Given that the simulation is setup to transform the PHEVs to high 

battery FEV, the only factor to transform is the number of CPs per 

center.  

 

3.3. Temporal Charging Behavior for Different Battery Sizes 

The temporal charging behavior is based on the connection and 

disconnection distribution of an agent given  per cluster of CPs. 

Before analysis, a cutoff on extremely short sessions less than 5 

minutes and long connection durations of 5 days and 

disconnection duration of 40 days was performed to filter outliers 

and/or errors. Afterwards, the mean behavior per unit time was 

calculated by polynomial fit.  

 

 

Fig. 6 The mean connection duration distributions for the 

different battery groups, where (a) shows the fitted distributions 

and (b) the differences between those distributions. 
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In Figure 6 the mean connection duration distributions for each of 

the battery categories are displayed. From this it is found that the 

high FEV users have a much lower first peak around 0.05 days 

(first hour), which suggests that high battery users are less likely 

to connect for (very) short durations. This may be explained by the 

idea that high battery EVs have a longer driving range and as such 

do not need to stop and charge for a short time in between driving 

and may prefer to wait and charge for a more solid duration. It can 

also be observed that low FEV and PHEV categories have a peak 

at both 0.35 and 0.55. We hypothesize that the 0.35 peak is due to 

the users charging at work (roughly 8 hours), while the 0.55 peak 

might point to users charging at home overnight (roughly 13 

hours) also found in (27, 29). This peak is absent in the high FEV 

group, which may indicate that large battery FEVs may not 

specifically charge at work as much as PHEVs and low battery 

FEVs.  

 

Fig. 7 The arrival time distributions for the three different groups 

 

The arrival time distributions indeed indicate a lower number of 

high FEV users that start their charging session at typical daytime 

or office hours.  

 

 

Fig. 8 The mean disconnection duration distributions for the 

different battery groups, where (a) shows the fitted distributions 

and (b) the differences between those distributions. 

 

In Figure 8 the mean disconnection duration, being the time 

between two subsequent sessions, distributions is displayed. Note 

that the high FEVs shows longer disconnection durations. High 

FEVs are found to have 49% of their disconnections longer than 

more than a day, while both PHEVs and low FEVs this is only 

30%. The figure shows peaks at 0.4, 1.4 and 2.4 in the high FEV 

pattern, indicating a disconnection of roughly nine hours plus zero 

to two days. This indicates that high FEV users tend to skip 

transactions and connect at the same time a day or more later. This 

corresponds with the finding that high FEVs have a lower mean 

number of weekly sessions than the other categories. 

For the lower battery categories, the highest peak is for very small 

disconnection durations of less than an hour. This may indicate 

that those users most often charge again right after reaching their 

destination. A deeper analysis of the differences between the 

distributions using the Hellinger distance showed, that the high 

battery FEV tend to differ more from the other two categories by 

disconnection than by connection duration. Low FEVs and PHEVs 

are very similar in both disconnection and connection patterns. 

Next, high FEVs differ from the other two groups by less charging 

transactions, which on average are longer and less frequent. 

 

 

3.4. Transformation of EV user behavior 

Having a clear insight in the differences in charging behavior, a 

transformation function can be developed that  enables 

transforming a user from one category to another. And then 

implementing this in the simulation model to evaluate how this 

plays out in the utilization of charging infrastructure. The SEVA 

model used in this research, simulates the behavior of an agent 

mainly by the use of the disconnection and connection duration 

distributions. The combination distributions of both results in 

arrival patterns and the number of weekly sessions. Therefore, the 
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connection and disconnection distributions are the main subject to 

the transformation.  

However, in this research, we choose not to consider the 

differences in center characteristics with the transformation for a 

reason. Namely, the differences, although significant, are a lot 

smaller than other differences and the manipulation of centers is 

not straightforward, since they are directly pulled from the dataset 

with the clustering of CPs. 

 

For the Factor Transformation (FT) we use the fitted means for the 

connection and disconnection distributions as seen in Figure 6 and 

Figure 7. The transformation can be defined by the following 

equation: 

 

Eq. 1 Factor Transformation function 

 

Here 𝑤𝑖 is the new value bin 𝑖 will take, 𝑣𝑖 is its old value and  𝑡𝑖 

and   𝑜𝑖 are the values in bin 𝑖 for the target distribution and the 

origin distribution respectively. The term 
𝑡𝑖

𝑜𝑖
 can be seen as the 

transform factor of the i-th bin. For each user transformation from 

PHEV to high FEV, t would represent the high FEV 

(dis)connection duration distribution and o the PHEV distribution.  

 

4. SIMULATION SETUP 

4.1. Extension of SEVA model 

To implement the transformation of an agent from one battery 

category to another, the SEVA model needs several upgrades. 

First, agents should now have an attribute containing information 

on whether the agent is a PHEV, low FEV or high FEV. Second, 

a transform probability which defines for each agent the 

probability of transforming from PHEV to FEV is added as 

parameter of the model.  

 

To implement the transaction volume in the model for a session of 

an agent, the whole population of a single battery category is used 

as predictive information on transaction volume for an agent 

within this group.  

The transaction volume is modelled as follows. For the whole 

category a heatmap of probability of transaction given the 

connection duration is setup, see Figure 8. During simulation the 

model samples a charged amount belonging to the simulated 

connection duration according to the probabilities at this 

connection duration.  

 

Fig. 9 Heatmap of transaction volume versus connection duration 

 

4.2. Simulation metrics 

The purpose of this study is to observe the change in demand on 

the charging infrastructure given the transition of battery size. 

Previous research revealed important key performance indicators 

on charging infrastructure for various stakeholders (27, 30). The 

following indicators were chosen to analyze from the simulation 

results; (1) Average connection duration per CP per week;(2) 

Average number of unique users per CP per week; (3) Average 

number of charging transactions per CP per week; (4) Average 

kWh charged per CP per week.  

 

4.3. Simulation procedure 

The simulation procedure is setup to research the effects of on the 

demand on the charging infrastructure as a transition takes place 

from a population fully consisting of PHEVs to one fully 

consisting of large battery FEVs. As such, the simulation contains 

the 1727 PHEV agents and is performed in five simulation runs of 

one year with those agents, keeping track of the system measures. 

Each simulation run every agent has a probability to be 

transformed to a high battery FEV at the start of the simulation. 

This percentage varies from 0% to 100% with a step size of 20%.  

 

5. SIMULATION RESULTS 

The values of the system measures in the case study are plotted 

against the probability to transform in Figure 10-14. The error bars 

indicate the variance over al CPs and all runs.  
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Fig. 10 Weekly connection duration related to transform 

probability 

 

Fig. 11 Weekly number of users related to transform probability 

 

 

Fig. 12 Weekly number of transactions related to transform 

probability 

 

 

Fig. 9 Weekly transaction volume related to transform 

probability 

There is a significant decrease (17%) in the number of charging 

transactions per week and the connection duration per week, which 

is as expected. This also confirms that the FT of disconnection and 

connection distributions does capture the difference in the number 

of charge transactions per week. The number of users per week 

also decreases, but not significantly over the scope of this 

transformation (0.7%). This decrease is not as strong as expected, 

which can be explained by the fact that the model does not 

decrease the number of CPs to choose from with the 

transformation. Each CP still has the same chance of being 

selected as it had before the transformation. The increase shown 

could be due to an agent having to deviate from its first choice less 

often, since CPs are less often occupied. Lastly, the total and the 

average per CP per week on charged kWh increase significantly 

(80% and 70% respectively)  for every step. The reason for this 

may be found in the idea that PHEVs tend to use their full battery 

each day and their transactions is limited by battery size rather than 

daily trip size, whereas FEVs do not have this limitation. 

 

6. CONCLUSION 

This study presented a simulation model for the transition of EV 

user charging behavior. The model is an extension of the existing 

SEVA model (currently under peer review). The transformation of 

EV user charging behavior due to increase of battery size was 

performed based on data analysis of actual EV users’ transactions.  

 

From this case study we see the utility of the CPs, and thus of the 

charging infrastructure, increases as the battery size of the 

population increases. The connection times per CP decreases, 

while the kWh charged at those same poles increases. This would 

indicate that, as a transition to higher batteries takes place, first the 

efficiency of charging infrastructure increases, and second less 

charging infrastructure would be needed to facilitate the EV 

population.  

The number of unique users per CP and the decrease in connection 

times would also be positive for EV users, as this implies that the 

CPs are available more often. Yet, the current transformation 

function could be improved on the CP selection process, which 

may affect this metric as well.  

 

There are some drawbacks as well. As we have seen, high FEVs 

charge more at night times and this could cause a higher peak on 

the energy demand as a higher fraction of the population starts 

charging at night. However, this peak might be shifted towards a 

later time using smart charging as generally not the entire night is 



 

Copyright © 2018 Society of Automotive Engineers of Japan, Inc. All rights reserved 

needed for a full recharge. Implementation of smart charging in a 

future research and extension of this model would therefore be a 

logical next step.  

 

Overall, the results of the case study indicate a decrease in demand 

on the charge infrastructure as battery sizes increase and the 

number of EVs stays the same, which is beneficial for most 

involved stakeholders. 
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