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Abstract

The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially dur-
ing peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging
system, the progression of charging from an empty battery until a full battery of the EVs based on real-
world data needs to be analyzed. Many researchers currently view this charging profile as a static load
and ignore the actual charging behavior during the charging session. This study investigates how differ-
ent factors influence the charging profile of individual EVs based on real-world data of charging sessions
in the Netherlands, enabling optimization analysis of EV smart charging schemes.

Keywords: Charging Infrastructure, charging profile, Electric Vehicles, smart charging, battery charging
load

1 Introduction

Although the mass adoption of Electric Vehicles (EVs) is often seen as beneficial in reducing greenhouse
gas emissions, it will put an additional load on the electric power system, with potential adverse effects
on its operation. Currently, the charging activity of EV users is highest during evening peak periods
around 18.00, when EV users arrive at home [1]. The charging infrastructure indeed has the potential
to significantly impact the local electrical grids [1]. Due to the possibility for demand peak shaving in
the afternoon, and the current lack of according management of charging behavior, many researchers
emphasize a need for delayed charging [1, 2, 3, 4]; this can result in “many benefits, such as cheaper
glggtricity rates for consumers, peak demand load shaving, and night time demand valley filling”[1, p.
].

However, to actually improve time management of charging, the variables influencing the charging time
need to be known and the effects of these variables need to be analyzed. This enables understanding of
the actual charging profile of the EVs. This charging profile entails the progress of charging of a battery
over time, and this leads to the considered question: What effect do external variables have on charging
from an empty battery until a full battery?

In this research the charging profiles of EVs are analyzed with real world data. ”In many designs and
studies related to EV battery chargers, the EV battery loads are considered as a static load, and the realis-
tic system behavior of the batteries during the charging process has been ignored” [2, p 483]. Research
that is done on these charging profiles have not yet been validated with real world data. They have only
been obtained with data from laboratory experiments [2, 4], or with the use of transportation data com-
bined with predictive or stochastic approaches [3]. More importantly, Jain and Jain [3] emphasize that
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the “accurate modeling of the charging profile of EVs is fundamental for [...] the impacts of increased
EV load and their charging mechanism on [the] distribution system, [namely] overloading of transform-
ers and cables, circuit losses, and power quality” and the effect on market price in the electricity market
[3, p. 74].

This research aims to fill this research gap by analyzing the charging profiles of Electric Vehicles (EVs),
and studying the public AC charging points with real world data. The state of literature is presented after
which a theoretical model, entailing both variables based on literature and exploratory variables influ-
encing the charging profile, is presented. With a regression analysis on data of charging sessions of EVs
these variables are analyzed and the results are presented. Subsequently, conclusions on the predictive
value of these variables are made. Based on these conclusions, knowledge of the effects of the variables
lead to more accurate charging profiles.

2 State of the art

2.1 Battery characteristics

The speed of energy transfer is dependent on two factors: the Voltage (V) and the current, which is ex-
pressed in Ampere (A). Because power transfer is based on the Voltage multiplied by the current, with
the same Voltage, a lower current will make energy transfer go slower and thus results in a lower charging
speed of batteries. This charging of a Li-ion battery consists of 3 sequential phases. When the battery is
completely depleted, the first phase occurs, and during this ’pre-charge’ phase, the current is kept low,
and the Voltage is increasing. However, most of battery charging of EVs take place in the second and
third phase, which is illustrated in figure 1 [5]. The second phase starts when the EV is 10% charged,
meaning the car has a State-of-Charge (SOC) of 10%. During this constant current (CC) phase, the cur-
rent is kept constant at a high level, until the Voltage of the lithium cell reaches a specified Voltage level.
The third phase starts at that point, in which the Voltage is kept constant, with a exponentially decaying
current. During this phase the battery is charged with a trickle current and therefore the charging of the
battery is slower [2].

Constant Current Constant Voltage f

-

Current
Voltage

Time

Figure 1: The charging profile of a Lithium-ion battery reprinted from [5].

2.2 Environmental effects

2.2.1 Peak

Many researchers have used data on the charging infrastructure to investigate the charging behavior of
EV users, looking at the peak demand, and predicting the pressure on the energy aggregators, used for
local distribution of power [1, 3, 6]. The large demand of electrical power for charging EVs can lead to
undesired peaks, potentially overloading transformers and cables, leading to circuit losses and reduced
power quality - such as a decrease in Voltage level [3]. These extra large peaks in electrical consumption
coincide with peaks in household consumption [7], since people tend to charge their cars immediately
when they get home [1]. In [7] it is mentioned that they used household power consumption profiles,
which are typical for Belgium, which can be seen in figure 2.

For this research the peak times as defined in [7] and [8] are considered. Both studied peak consumption,
and examined power losses and Voltage deviation for different Plug-in EV (PEV) penetration levels. This
penetration level implies the percentage of households charging a PEV; in a residential power network
of 20 houses and 4 PEVs the penetration level is 20%. They consider PEV penetration levels between
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Figure 2: Electricity demand profile Belgium, Figure 3: Voltage Profile at 30% PEV penetration
reprinted from [7]. level compared to 0%, reprinted from [7].

0 and 30%, since 20% penetration “’is representative of early low PEV adoption case in the near future
as PEV prices remain too high for most families to afford PEVs initially” [8, p. 4]. As shown in table
1, during [Ijjeak time, power losses can reach 5% in summer during peak time (18.00 - 21.00), and 6% in
winter, which theoretically leads to a decrease in charging speed with the same factor.

In addition to the power losses, the Voltage level deviates - with a maximum of 10.3%, in winter and 8.7%
in summer - from the situation in which no EVs are charging, as shown in figure 3 and table 2, which
are retrieved from [7]. These Voltage deviations “’cause reliability problems which must be avoided to
assure good operation of electric appliances” [7, p. 371], and could potentially lead to a lower charging

speed.
Table 1: Ratio of power loss to total power in (%), Table 2: Maximum Voltage deviations in (%), re-
retrieved from [7]. trieved from [7].
Charging period Penetration 0% 10% 20 % 30% Charging period Penetration 0% 10% 20 % 30%
level level
21.00 - 06.00 Summer 1.1 14 19 22 21.00-06.00  Summer 31 35 44 50
Winter 14 16 21 24 Winter 42 44 49 55
18.00 - 21.00 Summer 1.5 24 38 50 18.00-21.00  Summer 30 44 65 8.1
Winter 24 34 48 60 Winter 48 63 85 103
10.00 - 16.00 Summer 1.3 1.8 26 32 10.00 - 16.00  Summer 30 41 56 69
Winter 1.7 22 30 3.6 Winter 37 49 64 177

2.2.2 Day/evening

Another implication of their findings is the existence of difference between charging during the night
and during the day or the evening. On the one hand, the rate of power losses with EVs charging is higher
during the day (10.00-16.00) than during the night (21.00-06.00) and this can result in higher charging
speeds during the night. This is because charging during the day and the evening is more demanding for
the distribution grid, since the households’ electricity demand - as was shown in figure 2 - is also higher.

On the other hand, during the night the low Voltage level is expected to have a negative relationship
with the charging speed. Because the household electricity demand is low, and many EVs are charging,
there is a higher ratio of electricity demand for EV charging to household demand. This relative surplus
of EVs during the night potentially decreases the Voltage Ievel as shown in figure 3. ”Between 23h00
and 04h00, most of the vehicles are charging and the Voltage drop during these hours is the largest and
deviates the most from the 0% PHEV [penetration] Voltage profile” [7, p. 373]. In contrast, as men-
golned 11(17 [5], the network Voltage drops are within acceptable levels, since the Voltage deviations stay
elow 1%.

2.2.3 Temperature

The temperature of the battery also influences the charging profile: the battery has to be heated to transfer
energy. Subsequently, EVs are able to absorb power to charge the battery, unless extensive heating of the
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battery forces the charging to pause; the battery can cool down to manage possible overheating of the
battery [9]. Moreover, battery cells are suggested to operate most effectively between 20 - 25 degrees
of Celsius, and when the battery temperature diverges from this ideal, the Battery Management System
(113(1)\/[S) of the car reduces the requested current, making sure the health of the battery cells is protected
[10].

This BMS can be equipped with a temperature management system to control the cell temperature,
reducing the effect of the outside temperature. Additionally, the battery temperature is not only influ-
enced by the outside temperature, but charging and driving will generally increase battery temperature
as well [13].

2.3 Battery degradation

A study by [11] researched the lithium-ion batteries by conducting the capacity loss over time and over
charging cycles. They found that the time influences the capacity of the battery, so that it the capacity
loss “’progresses linearly with the square root of the time” [p. 2]. This decrease in battery capacity was
due to several variables: for higher temperatures this decay in capacity was larger as can be seen in Fig.
4a and when the State-of-Charge was lower, the decay was lower as well - as shown in Fig. 4b. This
illustration shows that after about 200 charge cycles - at 15 degrees and 50% of the total capacity charged
- the battery loss is around 3.5%.
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Figure 4: The effect of temperature (a) over days and ASOC (b) over charge cycles, reprinted from [11].

3 Theoretical model

Charging profiles are dependent on a large number of variables, that can be categorized in (i) environ-
mental, (i) charge point, (iii) car characteristics and (iv) external factors. Due to the scope of this paper
a limited amount of variables is presented.

3.1 Environmental effects

As mentioned in section 2.2.1, ]Izower losses and Voltage deviations can lead to lower charging speeds
during peak time and therefore the binary variable peak is considered in this research. Although it 1s un-
certain if this holds for the power grid in the Netherlands as well, peak is expected to be negatively related
to charging speed. Due to the lower power losses and higher Voltage deviations, which are mentioned
in section 2.2.2, the effect of the binary variable day is uncertain. The effect of the variable temperature
on the charging speed is explored and is expected to have a positive relationship with charging speed
because temperatures lower than 20 degrees are suggested to negatively impact the charging speed.

3.2 Charge point

In the electrical power distribution system it is expected that if more cars are charging at the same time,
the Voltage in the system decreases, and power loss increases. Since most charge points have two sock-
ets, possibly facilitating two cars at the same time, this research will explore potential power loss on
the micro-scale of the charge point itself; if on both the sockets of a charging point cars are charging,
does this affect the charging profile? Furthermore, this research will consider the effect on the maximum
charging speed if the car at the other socket is not charging but only connected. In consequence, the
effects of the binary variables double charge - with the possibility of the other car taking up power - and
double connection on the charging speed are analyzed.
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The effect of double charging and double connection is evaluated with the Voltage of the car at the
other socket as well. Because both the level of penetration in an electrical power system and the charg-
ing method - e.g. 400V - affect the maximum charging speed [7], this can result in a difference in effect
between a three-phase car (400V), using the other socket, and a single-phase car (230V).

Table 3: Categorization of charge point variables

Situation Variables Socket 1 Socket 2
Connected Charging 400V |Connected Charging 400V

1 DoubleConnection X X X

2 DoubleCharge X X

3 Voltage other socket X X X X
4 Voltage other socket : DoubleCharge X X X X X

5 Voltage : DoubleConnection X X X X

6  Voltage : DoubleCharge X X X X X

7  Voltage : Voltage other socket X X X X X
8 Voltage : Voltage other socket : DoubleCharge X X X X X X

3.3 Car characteristics

3.3.1 Voltage

Besides the current, the Voltage defines the charging speed. There are two methods of alternating current
(AC) charging: single-phase charging (230V) and three-phase charging (400V). Three-phase charging
facilitates charging speeds three times as fast as with single-phase charging; it only uses /3 times the
Voltage of single-phase charging to enable this charge speed difference. Because of this difference in
speed of charging, this research takes the binary variable voltage - either single-phase (0) or three-phase
(1) - into account and has examined the difference of the two methods of energy transfer.

3.3.2 Battery degradation

As [11] showed that batteries lose capacity over time and over charging cycles, this likely impacts the
charging profile of the EVs. If due to this capacity loss the last phase of charging - the Constant Voltaﬁe
phase - is affected, the charging speed of the battery might be altered. This last phase of charging is the
CV phase, in which the amount of Ampere is lowered and thus also the speed is lowered. Due to the
capacity loss, an effect on overall charging speed can occur, hence the continuous battery degradation
variable is examined.

3.4 Conclusive model

All these variables might have an effect on the charging profile, and the complete model is illustrated in
figure 5. The variables are presented in the categories: environmental effects (time, temperature), charge
point effects (connection/charging at sockets), car/battery characteristics, and other variables. This is a
multiple linear regression moc?el, which intends to predict the charging profile. This profile is described
as the average charging speed until full SOC. Each individual charging session is considered and the
variables with changing values over time are averaged over the time the car has not reached full SOC.
The results of this model are presented in the next chapter.

4 Methods

This section first describes the dataset with its parameters. From these parameters the variables discussed
in the previous section are calculated; this chapter describes how these variables are transformed in a
regression model.

4.1 Dataset

The dataset used in this research is provided by the Municipality of Amsterdam and the energy providers
responsible for the delivery of the energy. This dataset consists of two parts:
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Figure 5: Complete theoretical model

The first part gives the charging sessions, providing information such as “the address, [provider], time
details (date, start and connection time), amount of electricity and charging card/RFID used by the EV-
user” [12, p. 2]. The charging session lasts from the first connection moment until the car leaves the
charge point, and thus includes both the charging phase and the phase in which it is connected but not
charging.

The second part gives information on the specific meter values of the charging points every 15 minutes
corresponding a Timestamp for every unique charging session coded with a Transaction ID, a Charge-
point ID and a Socket ID. Combining the two parts result in the total dataset with the parameters as in
table 4. The meter values represent the kWh or Wh the charging point has charged in total. During a
charging session in which a car has charged an x amount, the meter value of the charge point will also
increase with .

Table 4: Parameters

Parameter Example Explanation

Charge service Provider NUON Owner of the used charging card
kWh 10.303 Charged energy in kWh
Connection time 5.133 Connection time in hours

Start Date 21-01-2015 Date the session started

End Date 21-01-2015 Date the session ended

Start Time 11:52:57 Time the session started

End Time 17:00:29 Time the session ended

Radio Frequency ID (RFID) 01B0011223312345  RFID code of a charging card
Chargepoint ID AL101 ID Code of a charging station
Socket ID 1 Code of used socket

Metervalue 6205309 Meter value in Wh

Timestamp of meter value 2016-01-04 08:24:58  Time of the specific meter value
Transaction ID 1255503 Code of unique charging session

Errors were recognized and filtered as mentioned in [12, 13]. Furthermore some changes were made in
order to get the same representation of data for both providers. Moreover, the charge points with more
than two sockets were filtered, in order to get a good measure for the variables double connection and
double charge. After filtering out above errors, the database consisted of 4.8 million records of meter
values and 128.000 records of charging sessions..
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4.2 Regression

This research explains the charging profile with the help of a linear regression. The linear regression is
used as means to see the influence of the variables on the charging speed. The linear charging profile is
obtained by averaging the charging speed until full SOC. The variables from the theoretical model are
analyzed with regard to this average charging speed. Figure 6 suggests that the aggregate charging can
be regarded as a linear profile. Because a charging session can last from 14.00 to 17.00 - and charges
from 14.00 to 16.00 - the hourly temperatures of 14.00 and 15.00 are taken into account and averaged
over the charge session until fulf/SOC - the hourly temperatures of 14.00 and 15.00 are averaged.

Relationship SOC and charging speed

Voltage
230V
8- — 400V

Aggregate charging in kWh

o 25 50 75 160
SOC in percentages (%)

Figure 6: Linearity for both Voltage levels

The SOC is on the x-axis, while total amount charged is on the y-axis. At the right top corner, the car is
fully charged. At the left bottom corner, the battery is completely empty.

4.3 Dependent variable: Acharging speed

To obtain the linear charging profile, which is described as the average charging speed until full SOC,
the total amount charged is divided by the time it takes to charge to full SOC. This average chargin
speed is called the delta of the charging session. Batteries can remain a long time in the 99% State-of-
Charge before reaching 100%, which 1s for the purpose of preventing overcharging, by charging with
low current. Therefore, in this research full SOC is reached when the car is not charging more than 100
W in the next hour, which entails that even with 99% SOC, they can be considered as fully charged. In
table 5 an example is presented. What is important: some figures illustrate the average charging speed,
which is the average over a charging session, while other figures mention charging speed, which entails
the actual charging speed at a certain moment.

Chargepoint ID  Socket ID Timestamp Meter value AWh Full SOC

AL101 1 11:52:57 6,205,309 False
AL101 1 12:07:57 6,206,195 886 False
AL101 1 12:22:57 6,207,081 886 False
AL101 1 12:37:57 6,207,968 887 False
AL101 1 12:52:57 6,208,498 530 False
AL101 1 13:07:57 6,208,508 10 True
AL101 1 13:22:57 6,208,511 3 True
AL101 1 13:37:57 6,208,513 2 True
AL101 1 13:52:57 6,208,515 2 True
AL101 1 14:03:26 6,208,515 0 True

Table 5: Example data

4.4 Independent variables

The variables day and peak were measured by looking at the time of charging and the timespan used
for the variable day is 8.00-23.00 and for peak is 17.00-21.00. The variable temperature is measured
by looking at both the historical hourly and daily temperatures distributed by the KNMI of the weather
station in Schiphol over 2015 and 2016 [14]. Also for this variable, the mean is calculated for the charg-
ing session when the car has not reached full SOC. For these binary variables this implies that if for
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example during the charging session 2 out of 3 hours it is day time, the value of the variable day will be
0.67. Battery degradation is measured by ranking all the sessions over RFIDs and examining the average
charging speed of the charging sessions over the amount of charging cycles.

To measure Voltage, the individual cars were categorized based on the RFID. The RFIDs can be cat-
egorized in two groups, depending on their maximum charging speed: single-phase or three-phase. Only
400V EV chargers can have charging speeds over 7.4 kW, and therefore maximum charging speeds over
7.6 kW (to correct for a margin of error), categorizes the EV as a 400V car.

To filter out errors and outliers surrounding the maximum charging speed, also the second maximum
speed is calculated. In case the second maximum speed differs widely from the maximum speed , the
charging session with the maximum charging S£eed is filtered out and the maximum speed is recalcu-
latedg. This step is repeated until the maximum charging speed is close to the second maximum charging
speed. For the data with provider EVNET, which has meter values in Wh, the limit of difference between
maximum charging speed and the second maximum speed is at 200 W. For the NUON data, since the
meter values are in kWh, the maximum difference is 1 kW between the maximum and second maximum
charging speed. By doing so, large outliers are filtered, but this also means that charging stations with
only a handful charging sessions might be filtered out, which also holds for charging stations with only
one record of a 400V car.

5 Results

5.1 Regression model

The results section first describes an the regression model, after which the results of the individual vari-
ables is elaborated upon. The total model gives the regression output as in table 6, in which the dependent
variable A of charge session - the average charging speed of a charging session - is expressed in W. All
variables except for battery degradation are rounded to two decimai in the regression model.

Estimate Std. Error tvalue Pr(>|t|)

(Intercept) 2746.39 8.47 324.10 0.0000 ***
Peak 65.16 9.19 7.09 0.0000 ***
Day -156.42 8.23 -19.01 0.0000 **%*
Hour_Temperature 3.65 0.36  10.12 0.0000 ***
DoubleConnection (1) 24.94 7.40 3.37 0.0008 ***
DoubleCharge (2) -42.85 10.56  -4.06 0.0000 ***
Voltage_other_socket (3) 38.17 15.50 246 0.0138 *
Voltage_other_socket:DoubleCharge (4) 46.56 28.49 1.63 0.1022
Voltage 5020.31 10.41 482.12 0.0000 ***
Rank_RFID (battery degradation) -0.7535 0.047 -16.17 0.0000 ***
Voltage:DoubleConnection (5) -498.14 25.38 -19.63 0.0000 ***
Voltage:DoubleCharge (6) 230.97 43.26 5.34 0.0000 ***
Voltage: Voltage _other_socket (7) -3.34 40.40 -0.08 0.9341

Voltage: Voltage _other_socket:DoubleCharge (8) -636.42 79.83  -7.97 0.0000 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1

Residual standard error: 753.3 on 125747 degrees of freedom
Multiple R-squared: 0.7513 Adjusted R-squared: 0.7513
F-statistic: 2.922 x 10 on 13 and 125747 DF p-value: < 2.2 x 1076

Table 6: Regression model

5.2 Environmental effects

The hypothesis that during peak time the charging of EVs would be slower is falsified as the effect is
significantly positive. Following the research of [7] as suggested in section 2.2.1, a negative effect was
expected for charging during peak time, but the results indicate that the charging speed is higher when
the car is charging during peak time, with an estimated positive effect of 65 W (2.4%) in case the car is
completely charged until full SOC between 17.00 - 21.00.

The variable day was one the one hand expected to have a negative effect due to more power loss during
the day, while on the other hand the higher Voltage levels during the day and the evening suggested a
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positive effect on charging speed. The results from the model suggest an overall negative effect of 5.7%
on the average charging speed of the EVs by charging during daytime. However, taking a closer look
at figure 7, it shows that 230V cars charge around 10% slower around 05.00 than during daytime, while
400V have valley hours around 08.00 in the morning. In this figure the slow pre-charge phase and trickle
current phase (start and end of charging) are filtered, which could have impacted this result.

The effect of temperature on the charging time is positive, and since this is a continuous variable, for
every degree of Celsius increase, the charging speed increases with 3.7 W. So for a difference of 20
degrees, the average charging speed difference is expected to be 2.7%. This result means that overall
charging is slower when it is colder and as can be seen in figure 8, this is especially true for 230V cars
below zero degrees. This may suggest that this is because 230V cars have slower charge speeds, and thus
it is more difficult to heat the battery for maximum charging speed. The higher charge speeds of 400V
cars restrain maximizing charge speed with higher temperatures, while taking care of the Il))attery health.

Charging speed during the day for SOC (25%-75%) Non-linear relationship hourly temperature and average charging speed

8.0~

©
s
A0OF
1
ADOP

Voltage
230v

Voltage
230v
— 400V

oo

— 400V

Average charging speed in KWh
o

Average charging speed in kWh
- -

A0gS
n
ADEZ

9

2

0100 03'00 05:00 07/00 09'00 11:00 13'00 15:00 17:00 19°00 21:00 23:00 01:00 o 1 20 30
Time of day Hourly temperature in degrees celsius

Figure 7: Charging speed during the day (SOC: Figure 8: Effect of temperature on charging speed
25%-75%)

5.3 Charge point

The results of the variables double connection, double charge and voltage other socket are illustrated in
7. Interestingly, there is a large contrast between 230V and 400V cars. In situations 1-4 the results are
shown for when at the measured socket (socket 1) a 230V is charging. When at the other socket another
230V car is connected, there is a small positive result (situation 1). However, if at the other socket a
230V car is charging (situation 2), the average charging speed goes down with 1.5 %; if the car at the
other socket is a 400V car instead, the charging speed actually goes up with around 1.5% when it is only
connected and when it is also charging (situations 3 and 4). Therefore it makes a difference for a 230V
car if at the other socket a 400V car is connected, and also when it is charging.

Situations 5-8 show the effect on charging speed for when a 400V car is connected at socket 1. If a
230V car is charging at the other socket (situation 5) this results in a 6% decrease, while when the 230V
car at the other socket is charging (situation 6), there is an increase of 3%. In situation 7 at both sockets
400V cars are connected, which has an insignificant result. When these 400V cars are both charging
(situation 8), however, the average charging speed drops 7%.

These results show that there is a large contrast between the charging of 230V cars and 400V cars, and
also that there is a large effect of the interaction between the cars at the same charging station. The
charging speed is dependent on the Voltage level of the car at the other socket, and if it is charging or
only connected. This study can not explain this contrast and

5.4 Car characteristics

The variable that explores the difference between single-phase (230V) and three-phase (400V) cars was
expected to be three times as high. This is true as can be seen in multiple figures, and the regression table
6 shows that the effect is at least three times as high,Therefore, the hypothesis that three phase charging
speeds can be predicted by approximately multiplying the charging speed with three can be confirmed.

At first, the battery degradation component does not seem to have large impact, however sessions of
EVs in this dataset can amount to 350 sessions for a single RFID (In the used dataset, only 230V cars
had reached more than 200 sessions). For 100 sessions, this effect would be around 3% compared to the
first session and in total (for 350 sessions) up to almost 10%. This implies that the more often a car is
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Table 7: Effect of charge point variables

Situation Socket 1 Socket 2 Effect
Connected Charging 400V | Connected Charging 400V

1 X X X ok

2 X X X X JFEE

3 X X X X 1

4 X X X X X insignificant
5 X X X X JFEE

6 X X X X X Aok

7 X X X X X insignificant
8 X X X X X X ek

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05
1/]: small effect (< 50W) ; 1/{): large effect (> 200W)
The car at socket 1 is measured: for differing situations the car at socket 1 is influenced and this effect is
measured.

charged the speed of charging decreases. This result of this variable for both 230V and 400V is shown
in figure 9. In the figure, the effects are normalized compared to the first charge session.

Battery degradation over charge cycles Non-linear relationship SOC and charging speed
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Figure 9: Effect of battery degradation on charging
speed

The x-axis represents the total number of
charge sessions of a certain RFID.

Figure 10: Effect of State-of-Charge on charging
speed

This figure is elaborated upon in the
Discussion section

6 Discussion
In this section the limitations of this research will be discussed.

The linearity of the variables can be discussed, since some of the variables show a clear non-linear
pattern. The regression model that is used, therefore does not give the full image, hence why the figures
give a better representation of the actual influence of the variables. Furthermore, since the battery degra-
dation can only be calculated on the sessions that were in the dataset and thus a car that is charging for
the 150" time can be marked as the first charge session. Therefore it is hard to draw final conclusions
about the specific battery degradation of cars and its effect on charging speed. There might be other en-
dogenous variables playing a role in the impact of the amount of charge cycles on the average charging
speed. To have a better view of the influence of battery degradation, a longer time period can be chosen.
By making sure the first charging sessions of a car are tracked the influence of battery degradation can
be checked. Furthermore, by comparing the amount of charge sessions between cars, the direct influence
of battery degradation can be examined.

From the literature, the effect during peak time, was expected to be negative [7, 8], but this variable
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has not had a significant impact on the average charging speed in this study. The lack of negative effect
could be due to a strong power grid with large capacity. However, more research can be done to explain
the difference in positive peak time relationship, since this effect is different than expected. What is
more, the regression model suggested a negative effect of charging during the day, but figure 7 shows a
positive result, meaning that there are endogenous variables influencing the regression output. Including
more variables would give a better image of the actual effects of the variables, which is not possible in
this research due to the scope.

In this research data was used from two energy providers: EVNET and NUON. Because the data pro-
vided by NUON was different in precision - a factor of thousand - the precision in the variables can also
have been affected, certainly since trickle charging at the end of a charge session was mostly filtered
because of this lack of precision. However, the precision of the EVNET data also implied difficulty in
determining a cutting-off point at which a car was described as fully charged. Due to this arbitrarily
chosen point, the effects of - and during - trickle current are hard to compare for both providers.

7 Conclusion

This research aims to provide a more extensive analysis of the charging profile of EVs, through studying
variables influencing the charging profile at the public alternating current charging points. Until now,
the charging time has only been based on the maximum charging speed, which is calculated by dividing
the session time by the total amount charged, as mentioned in [13]. Various variables influence charging
speed and total charging time and their effect is analyzed. This research demonstrates, based on real
world data that indeed many variables influence charging time. The most important findings show that
the Voltage level of a car has a large impact, especially in combination with the result that amount of
cars being connected or charging at a single charging station influence the charging speed, as illustrated
in table 7. Moreover, the charge speed decays due to battery degradation and during daytime and peak
hours as illustrated in figure 7 suggest a positive relationship with charging speed.

The results of this study are used to further develop a model that includes most important influenc-
ing factors on charging profiles of EVs and can be used to predict these charging profiles. With the
predictors of the complete model, the actual charging time can be estimated with more accuracy based
on the available data, which makes it possible to further optimize charging behaviour.

The study has researched the Netherlands, and in countries with similar charging infrastructures the
results of can give replicable estimations. However, in order to understand the charge point effects, it is
necessary to validate the results through direct measurement. Further work on linking real world datasets
with other influencing variabels will be carried out to enable more accurate estimation of real world
charging profiles. This research intends to contribute to more optimized, efficient charging, helping to
limit greenhouse gas emissions, and improving customer experience. Further research should focus on
charging time estimation based on real data, as it plays an important role in validating theoretical models
of battery behavior. This research already touched upon the influence of State-of-Charge, and further
research should be carried out to get the charging profile, based on real-world data. Finally, additional
research should be undertaken in related fields of study, for example charging behavior management, to
explore strategies that could ensure EV-owners actually charge their vehicles at night.
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