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Abstract 
This research aims to find relevant evidence on whether there is a link between air capacity management 
(ACM) optimization and airline operations, also considering the airline business model perspective. 
The selected research strategy includes a case study based on Paris Charles de Gaulle Airport to measure 
the impact of ACM optimization variables on airline operations. For the analysis we use historical data 
which allows us to evaluate to what extent the new schedule obtained from the optimized scenario 
disrupts airline planned operations. The results of this study indicate that ACM optimization has a 
substantial impact on airline operations. Moreover, the airlines were categorized according to their 
business model, so that the results of this study revealed which category was the most affected. In detail, 
this study revealed that, on the one hand, Full-Service Cost Carriers (FSCCs) were the most impacted 
and the presented ACM optimization variables had a severe impact on slot allocation (approximately 
50% of slots lost), fuel burn accounted as extra flight time in the airspace (approximately 12 min per 
aircraft) and disrupted operations (approximately between 31% and 39% of the preferred assigned 
runways were changed). On the other hand, the comparison shows that the implementation of an 
optimization model for managing the airport capacity, leads to a more balanced usage of runways and 
saves between 7% and 8% of taxi time (which decreases fuel emission). 

1. Introduction 
Air transport has experienced constant growth throughout the twentieth century (Jiang et al., 2019). 
Despite several crises that have impacted the sector, air transport has proven to be resilient and been 
able to recover from many adverse events such as economic and political crises by demonstrating steady 
growth over the years. Last year, the world was hit by arguably  the most striking crisis of all time, 
when the Covid-19 pandemic broke through. The aviation sector has been one of the most affected by 
this,  as it has experienced a sharp decline in Europe,  reaching about 65% fewer flights performed so 
far (EUROCONTROL, 2021). The only aviation sector that was positively impacted was the cargo 
sector, which witnessed a 10% increase in traffic.  The most optimistic forecast predicts that traffic will 
recover almost completely  to pre-Covid19 times (2019), by 2024 (EUROCONTROL, 2020). As 
reported by IATA, the aviation sector has lost about 11,9 billion to date , with 4,8 million of direct lost 
jobs and the revenue per passenger/kilometer dropping/falling  by 70% (Airlines., n.d.; IATA, 2020). 
However, as the forecast shows, the traffic will slowly recover and bring to light the air traffic network 
capacity issues, as it was just before Covid-19 outbreak started. In this regard, airports play a crucial 
role as nodes of the air traffic network and as an interface between air and land, contributing to the 
growth of air traffic (Pacagnella et al., 2021). The forecasted growth in air traffic volumes in a post-
Covid19 scenario will present new challenges to all stakeholders involved, as environmental, social, 
technical and land-use constraints will prevent airports from developing and expanding their capacities 
(Jacquillat & Odoni, 2018). The cost of delays, flight cancelations,  lost slots due to capacity constraints 
affect the airline profitability (Cook et al., 2012). As reported by T2RL, (2016), the costs to airlines due 
to disrupted operations are estimated at $60 billion globally, representing 8% of the airline revenues in 
2016. It is therefore in the interest of every airline to ensure efficient and effective operations at the 
airport to prevent any disruptions. The increase can be traced back to ancillary services that have 
become an integral part of the business model of all types of airlines (Warnock-Smith et al., 2017). 



Ancillary revenue describes the additional revenue generated by an airline in parallel to the sale of its 
flight tickets (O’Connell & Warnock-Smith, 2013). This source of revenue can be generated through 
direct sales to passengers or indirectly as part of the travel experience (O’Connell & Warnock-Smith, 
2013). Consequently, airlines and their operations are dependent on airport infrastructure. Airports are 
always looking for ways to cope with the increasing air traffic. In this context, there are long and short-
term solutions to potentially solve the problem, but they often have the disadvantage of not being  
feasible in real operations (Scala, Mujica Mota, Wu, et al., 2021). Although there have been quite some 
studies about airport capacity management, that address various aspects  of the problem (airspace 
sequencing, runway management, taxiway routing, gate allocation), few of them consider airline 
fairness in their model variables. Hence, this work will focus on the research question of how Airport 
Capacity Management (ACM) impacts airline operations. In this way, this study serves as a proof-of-
concept for creating awareness on the variables that should be included when managing the capacity of 
airports while  taking into account airlines interests. Thereby, this study is conducted by using a real 
case study which is Paris Charles de Gaulle Airport, and the flight data used refers to a pre-Covid19 
scenario. The authors believe that the work will be relevant as the air traffic will be recovered in post-
Covid19 scenarios.  
The paper is structured as follows: in the next section a brief state of the art of the main studies related 
to airport capacity management and airline fairness is given; then the problem of airport capacity 
management is defined; followed by a description of the empirical study , with the relative results; next 
a section for discussion and interpretation of the results is provided; and lastly conclusions and future 
research directions are given. 

2. Literature review on airport capacity management and airline fairness 
This section presents a brief literature review of the recent development on airport capacity management 
that highlights the relevancy of this research. Moreover, studies on how airline fairness has been 
implemented to the problem of airport capacity management is presented. Finally, the contributions of 
this paper are listed. 

2.1. Airport capacity management 
Airports are intermodal interfaces between the air and the ground traffic, in this context, passengers and 
aircraft pass through several processes at the airport, which thus fulfills the interface function. Dray, 
(2020) refers to the airport capacity as the quantifiable production output of an airport. It can be stated 
that airport capacity is composed of various sub-capacities and that a capacity bottleneck in one 
component determines the total capacity of an airport. In the literature there are no standard definitions 
of airport capacity, however, Jacquillat & Odoni, (2018) generalize the term airport capacity by defining 
it as an interaction between the “existing infrastructure and the limited operational capabilities” of the 
airport. Based on these definitions, it can be stated that ACM refers to the coordination and 
administration of explicit tasks to address demand  and capacity constraints at airports. The objective 
hereby is to maximize throughput, minimize congestion and improve resilience towards disruptions. In 
this work, we refer to ACM as the integration between airside and airspace operations with the aim  of 
ensuring safe operations and maximizing the efficiency of existing infrastructure. In this context, 
Kjenstad et al., (2013) proposed arrival, departure and surface management, where they optimize in a 
sequential way the surface aircraft routing and the arrival and departure sequence. Bertsimas & 
Frankovich, (2016) tackled the airspace and ground operations problem by optimizing air and ground 
aircraft sequences by applying a two-stage solving method. Other studies that focused on similar 
problems can be found in Samà et al., (2013), Bosson et al., (2015) and Guépet et al., (2017). In Ma et 
al., (2019), airspace aircraft sequencing operations were integrated with airport ground operations at a 
macroscopic level. In this study, taxiways and terminals were modeled in low detail by considering 
them as nodes of a network characterized only by their capacity. The problem was solved with a 
heuristic that employs a sliding window approach. The extension of this work involves the use of 
simulation in combination with optimization for improving the robustness of the solution (Scala et al., 
2020; Scala, Mujica Mota, Wu, et al., 2021). 



In general, the aforementioned studies focused on improving  the decision-making process through a 
system-wide exchange of data, increasing the system's capacity through improved management of 
traffic flows, and raising the situational awareness among participants in airspace and ground 
operations.  
The present work is based on the works of Ma et al., (2019) and Scala, Mujica Mota, Wu, et al., (2021), 
where both ACM are formulated and solved by using optimization techniques. The novelty of this study 
is that it considers the airline’s point of view as a critical evaluation factor.    

2.2. Airline fairness in airport capacity management problems 
In this section we present a literature review of studies that address airspace and airport management 
problems when airline fairness is considered. We divide this section into three subcategories: slot 
allocation, aircraft emissions, operations disruptions. 

2.2.1.  Slot allocation 
EU, (2016) defines slots as a limited time interval during which flights are authorized to operate (take-
off or landing) at the airport, allocated to particular airline corporations. Whereas the International Civil 
Aviation Organization (ICAO, 2012) describes a slot as the takeoff and landing rights at an airport. At 
the European level, slot allocation is based on the Council Regulation (EEC) No. 95/93 on standard 
rules for the allocation of slots at community airports (EU, n.d.). Considering the scarcity of airport 
capacity, the significance of coordinating arrival and departure times and slot allocation at busy and 
highly congested airports is growing (de Wit & Burghouwt, 2008). Many airports do not have sufficient 
runway capacity to satisfy the overall demand for slots, as the required number of take-offs and landings 
at peak times of the day is higher than the existing airport capacity itself (de Wit & Burghouwt, 2008). 
Bard & Mohan, (2008) focused on the relocation of arrival slots, introducing a model that aims to  
allocate incoming flights  in the ground delay program (GDP) to available arrival windows in a total 
cost minimized manner.  Ribeiro et al., (2018) established a novel multi-objective priority-based slot 
allocation model (PSAM). Based on the key performance indicators of airport declared capacities and 
requested slots of the airline, a schedule is constructed, with the aim to minimize the displacement of 
slots regarding the requirements of the IATA guidelines. The work of Ivanov et al., (2017) focuses 
explicitly on Air Traffic Flow Management (ATFM). In their two-level mixed-integer optimization 
model, they investigate  the possibility of distributing ATFM delays. The objective hereby is to 
minimize propagated delays and subsequently maximize airport slot adherence of regulated flights by 
the airline.  However, Miranda & Oliveira, (2018) shed light not only on the strategies and models used 
to allocate scarce airport slots, but also on the study from the point of view of the airlines. Hereby they 
examined the relationship between the control of slots and their incentives to commit themselves to 
service quality. Further studies explicitly examine slot constraints or loss of slots, for which influencing 
variables were considered, such as extra pushback time (Liu et al., 2017; Sun et al., 2018) and extra 
entry time of the aircraft (Schummer & Abizada, 2017). Androutsopoulos & Madas, (2019) take it a 
step further and include the fairness of airlines. In their work, they extended the strategic scheduling 
model to ensure that each airline has its fair share of congestion. 

2.2.2. Aircraft emissions 
The reduction of kerosene consumption plays an essential role from both an ecological and an economic 
point of view. In the field of air traffic management,  the focus was on reducing the amount of 
greenhouse gas emissions. The majority of literature examines the relationship between the use of the 
taxiways and the generated emissions since fuel consumption and emissions are directly dependent on 
aircraft ground movements. Thus, significant fuel and emissions savings can be achieved through 
targeted optimization of taxiing traffic on the ground. Simaiakis et al., (2014) argue that the upsurge of 
taxi times, as well as fuel consumption and emissions can be traced back to the airport surface 
congestion. They conducted  a field study at the Boston Logan International Airportemploying the K-
control method, which resulted in fuel consumption of 12000-15000 kg/day, while the gate pushback 
time increased by 4.4 minutes. Based on the K-control method, Lian et al., (2019) discusses the 
influence of extensive departure taxi-out times at airports. They propose a Dynamic Pushback Control 



method based on the predicted taxi-out time. This is designed to rationally distribute operating time and 
achieve the necessary trade-off between fuel consumption reduction and gate holding times. Rodríguez-
Díaz et al., (2019) constructed a bi-objective model for aircraft ground scheduling. In addition to 
reducing delays, this model aims to reduce aircraft noise and fuel consumption. They used a real case 
study, Madrid-Barajas airport, and demonstrated significant improvements of up to 4.5% decrease in 
fuel consumption. 

2.2.3. Operations disruptions 
The continuing growth of air traffic has resulted in the increasing logistical complexity of air transport 
(Kang & Hansen, 2018; Wang et al., 2019). Furthermore, air traffic is also a system characterized by 
operational fluctuations. Regular short-term and mostly unforeseeable events can easily lead to minor 
or major flight irregularities (Jimenez Serrano & Kazda, 2017). Flight irregularities include any 
phenomena that noticeably disrupt flight operations (Wang et al., 2019). As a result, routine handling 
processes cannot be carried out as planned, causing previously optimized flight schedules to be 
interrupted and resulting in severe delays (ACRP, 2012). In this context, disrupted operations can be 
defined as a representation of irregularities and interruptions of in-flight operations caused by 
unscheduled events or phenomena. Therefore, they require special measures and capabilities for the 
organization and re-organization of handling processes in the air transport (Jimenez Serrano & Kazda, 
(2017). One of the first studies on disrupted operations is provided by Clarke, (1998), where a decision-
making framework was developed that addresses the question of how airlines can re-assign aircraft for 
scheduled flights after a disruptive event. Rosenberger et al., (2000) introduced a stochastic model of 
daily flight operations. The aim of this model is to evaluate crew rotations or procedures for handling 
operational disturbances during random events caused by weather or mechanical errors. Other studies 
have examined the impacts of ACM on tactical response capabilities of the airline, such as flight delay, 
cancellation or diversion. In Løve et al., (2002) a heuristic was implemented for the reassignment of 
aircraft to flights, delaying or flights cancelations due to unforeseen events. Abdelghany et al., (2004) 
developed a model for planning flight schedules by considering air traffic delays. They extended this 
work by developing a model that simulates and optimizes the schedule in case of  irregular occurrences 
(Abdelghany et al., 2008). Malandri et al., (2020) developed a discrete event simulation model for 
arrival, departure and turnaround operations assessing the impact of rerouted flights to other airports on 
the ground operations, focusing on ground handling workload.  

2.3. Paper contributions 
Theoretically, the relationship between ACM and airline operations has been approached from different 
perspectives. In this context, we have reviewed many studies about airport operations that focus on 
improving their effectiveness and efficiency with the aim of enhancing airport capacity, both for 
airspace and ground areas. Despite the many studies that consider airline fairness in terms of slot 
allocation, emissions and operations disruptions, they have always considered airspace and ground 
operations independently. In this work, we overcome this aspect by considering integrated airspace and 
ground airport operations (ACM) and evaluating how Air Traffic Management (ATM) tactical decisions 
affect the airline's operations. 
In the ACM framework, we define three airline fairness variables, namely missed slots, emissions, 
disrupted operations and we evaluate the extent to which they are affected either positively or 
negatively, by tactical ATM decisions. We will use these new insights to redefine  the objectives of the 
ACM problem. 
Moreover, we will conduct a thorough analysis by considering the different airline business models, 
which will provide us with further insights into the correlation between ATM decisions and airline 
fairness.       
In conclusion, the literature review revealed the following assumptions/limitations: the research on 
ACM has focused more on the impact on airports rather than on the perspective of airlines or the airline 



business models. Therefore, this study will conduct  further research and investigation on the aspects 
of ACM and its impact on the airline operations from the airline business model’s perspective. 

3. Problem description 
In this work, the ACM problem is studied. For this purpose, the ACM is defined as the integration of 
the landing aircraft sequencing in the airspace near an airport and aircraft movement congestion on the 
ground of an airport (Scala et al., 2020; Scala, Mujica Mota, & Delahaye, 2021; Scala, Mujica Mota, 
Wu, et al., 2021). The operations involved in this problem are as follows: aircraft arrival sequencing in 
the airspace (i.e., the Terminal Maneuvering Areas, TMA); runway operations (i.e., aircraft arrivals and 
departures); aircraft occupancy of the taxiway and terminal gates; and aircraft departure sequencing. 
Figure 1 illustrates  a schematic overview of the problem. 

 

Figure 1. ACM schematic overview (Scala, Mujica Mota, & Delahaye, 2021). 

The tactical decisions of the ATM are:  

● Airspace delay (advance), defined as the time stamp given by air traffic controllers (ATCOs) 
at the entry point of the TMA to the aircraft. Given an already defined flight plan, aircraft 
could be delayed or advanced; 

● Speed modification in the airspace, defined as the speed to be maintained when entering the 
TMA; here the speed could be adjusted by either decreasing or increasing the already planned 
speed; 

● Landing runway assignment, defined as the choice of the runway to use for landing; 
● Departure runway assignment, defined as the choice of the runway to use for departure; 
● Ground delay, defined as the delay given to aircraft before they leave the parking stand. 

The ACM problem has been formulated as a mathematical problem by defining an objective function, 
constraints and decision variables. The objective function of the optimization model takes into account 
the  airspace performance and the airside performance in terms of conflicts. An airspace conflict is 
defined as violation of the separation minima between consecutive aircraft, while airside conflicts are 
defined as capacity overloads. The objective function is represented by the weighted sum of the airspace 
and airside performance (1). The weights Yairspace and Yairside  are assigned to the airspace and airside 
performance, respectively. These weights can be adjusted to drive the optimization process by focusing 
on one of the two components. The objective function aims at minimizing the airspace and airside 
ground side performance, therefore, an optimal solution will lead to 0. 

Objective function = Yairspace × Airspace performance + Yairside × Airside performance (1)

The airspace and airside performance represent the constraints of the optimization model. Airspace 
performance is identified by aircraft separation conflicts and sequence order conflicts (2). Aircraft 



separation conflicts are defined as the violation of the separation minima between consecutive aircraft 
(3). Sequence order conflicts are detected to prevent an aircraft overtaking another one (4). 

Airspace performance = Airspace conflicts + Order of sequence conflicts (2)

Airspace conflicts and order of sequence conflicts are formulated as follows: 

Airspace conflicts: let be A a given set of landing aircraft, i and j consecutive pair of aircraft, Sij the 
separation minima between the leading aircraft type i and the trailing aircraft type j and Dij the distance 
between aircraft type i and aircraft type j. For details about the values of Dij, please refer to (Scala, 
Mujica Mota, Wu, et al., 2021). In this way, conflicts are detected and calculated as: 

Airspace conflicts = {1, 𝐷௜௝ < 𝑆௜௝ , ∀𝑖, 𝑗 ∈ 𝐴  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (3) 

Sequence order conflicts: let be l(u,v), l=1,..,n, a given set of links 𝑜𝑟𝑑𝑒𝑟௙௨
௟  𝑎𝑛𝑑 𝑜𝑟𝑑𝑒𝑟௙௩

௟  the positions of 

the aircraft i on the link entry u and on the link exit v, respectively. The sequence order conflicts are 
calculated as: 

Sequence order conflicts = ∑௡
௟ୀଵ (∑௜∈஺ 𝑜𝑟𝑑𝑒𝑟௜௩

௟ − 𝑜𝑟𝑑𝑒𝑟௜௨
௟ ) (4)

The airside performance is identified by the runway conflicts, taxiway and terminal overload (5). The 
runway conflicts are calculated in a similar way as the  airspace ones, the only difference is that airspace 
and runways have different separation minima standards [4] (6).  

Airside performance = Runway conflicts + Taxiway overload + Terminal overload (5)

Runway conflicts: let be A a given set of aircraft, i and j a consecutive pair of aircraft, Sij the separation 
minima between aircraft type i and aircraft type j and Dij the detected time difference between aircraft 
type i and aircraft type j. For details on the values of Dij, please refer to Scala, Mujica Mota, Wu, et al., 
(2021). In this way, conflicts are formalized with the following function: 

Runway conflicts = {1, 𝑖𝑓 𝐷௜௝ < 𝑆௜௝ , ∀𝑖, 𝑗 ∈ 𝐴  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (6)

Taxiway and terminal overload are calculated in terms of max and average overloads (5-8). 

Taxiway and terminal overloads: let be C the capacity, Ot the aircraft occupancy for each discrete time 
increment t∈T; and T the entire time frame considered, the max and average (taxiway/terminal) overload 
are given by: 

Taxiway/Terminal overload = Max overload + Average overload (7) 

Max overload = {𝑚𝑎𝑥௧∈்(𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑௧), 𝑖𝑓 𝑂௧ > 𝐶 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (8) 

Average overload = 
∑೟∈೅ ை௩௘௥௟௢௔ௗ೟

்
 

(9) 

Overload = {𝑂௧ − 𝐶, 𝑖𝑓 𝑂௧ > 𝐶 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (10) 

The decision variables of this problem refer to the tactical ATM decisions mentioned previously. Given 
a set of flights F, for each flight f, where f∈F: 

Airspace delay (advance):  

tf∈Tf where Tf ={𝑇௙
௢+ j∆T | (∆Tmin)/∆T ≤ j ≤ (∆Tmax)/∆T  , j∈Z } (11) 



where ∆Tmin and ∆Tmax are the minimum and maximum values that can be assigned to tf, and ∆T is a 

discretized time increment. In this case ∆Tmin is −5 min, ∆Tmax is +30 min and ∆T is 5 s. 

Speed modification in the airspace:  

sf∈Sf where Sf = {𝑆௙
଴ + j∆S | |j| ≤ (∆Smax − ∆Smin)/∆S, j∈Z} (12)

where ∆Smin and ∆Smax are the minimum and maximum values that can be assigned to sf and ∆S is a 

discretized increment. In this case ∆Smin is 0.9𝑆௙
଴, ∆Smax is 1.1𝑆௙

଴ and ∆S is 0.01𝑆௙
଴. 

Landing runway assignment:  

𝑙௥௙ ∈ 𝐿𝑅௙  
(13) 

Where LRf is the set of available landing runways. 

Departure runway assignment:  

𝑑௥௙ ∈ 𝐷𝑅௙ 
(14) 

Where DRf is the set of available departure runways. 

Airside delay:  

pbf∈PBf where PBf = {𝑝𝑏௙
଴ + j∆T | 0 ≤ j ≤ (∆PBmax)/∆T, j∈Z} (15)

where ∆PBmax is the maximum value that can be assigned to PBf, and ∆T is a discretized time increment. 

In this case ∆PBmax is +15 min and ∆T is 5 s. 

3.1.Airline fairness variables 
In this study, we identified three variables that represent airline fairness in the context of the ACM. 
These variables are the following: 

● Missed slots, any delay that occurs to the scheduled landing time/departure time (SLT/SDT) 
that exceeds 10 minutes (Cohor, 2021); 

● Emissions (fuel burned), given by the extra time spent on the airspace (delay) and on the 
airside (taxiway), which leads to more fuel being burned than necessary; 

● Operations disrupted, change in planned assigned runway that results in a change in taxiway 
route, as this can potentially add additional time in performing airside operations. 

This study aims to quantitatively evaluate each of these variables after the ACM is solved by using 
optimization techniques. The airline fairness variables and the  tactical ATM decision are directly 
correlated. The missed slots variable is directly correlated with the airspace delay, airside delay and 
tactical ATM decisions. The more delay is given to aircraft, both in the airspace and in the airside, the 
more likely the flight will lose its own landing/departure slot. Emissions are directly correlated with the 
airspace delay, as the more aircraft flying in the airspace, the more fuel is burned. Moreover, a change 
in the planned landing/departure runway could potentially increase the taxiway time, which would 
increase emissions. Flying at higher speed also impacts the fuel burned by aircraft, however, this was 
not considered  in this work. Lastly, the variable disrupted operations is directly  related  to the 
landing/departure runway change. By changing the assigned runways the taxiway routes will also 
change, leading potentially to extra taxiway times. 
The analysis conducted in this paper, not only considers airline fairness variables, but also distinguishes 
the airlines according to their business model, giving more insights on which category is more affected 
by the ACM problem optimal solution. In this paper, we distinguished between Full-Service Cost 



Carriers (FSCCs), Low-Cost Carriers (LCCs), Cargo Carriers (CaC), Charter Carriers (ChC), and 
Regional Carriers (RC). 

4. Empirical study: CDG case study 
The analysis conducted in this study deals with a real case study, namely Paris Charles de Gaulle (CDG) 
Airport. CDG Airport is one of the major airports in Europe, due to its size, number of passengers 
transported and air traffic movements. It is the hub of the French carrier Air France and transported 
76.2 million passengers in 2019, connecting 328 destinations in 119 countries (Paris Aeroport, n.d.-b).  

4.1.CDG airport airside and airspace 
CDG airport has four parallel runways. They operate as independent runways, meaning that they can 
accommodate air traffic movements simultaneously. In real operations two of the runways are used only 
for landings and the other two only for departures. CDG airport is constituted by three terminals and a 
complex taxiway network. However, in this study, terminals and taxiway network are characterized by 
their capacity and occupancy time. Taxiway times are calculated as averages of surveilled taxi times, 
while terminal times are derived by the original schedule and represent the aircraft turnaround times. 
Tables 1 and 2 display the capacity of these components and the average times of the taxiway used in 
the optimization model. Figure 2 depicts the top view of the CDG airside. 

Table 1. Ground component capacity 

Ground component Capacity 
Landing runway 1 
Departing runway 1 
Taxiway network 20 
Terminal 1 11 
Terminal 2 89 
Terminal 3 55 

Table 2. Average taxiway times [s] 

Terminals 

Runways 
Landing runways (taxi-
in time) 

Departure runway 
(taxi-out time) 

27R 26L 26R 27L 
Terminal 1 400 535 720 1400 
Terminal 2 730 500 890 760 
Terminal 3 680 530 880 710 

 

 

Figure 2. CDG airside. 



The TMA of CDG considered in this case study only included aircraft arrival routes. CDG has two 
routes coming from the north and two coming from the south, with a total of four different entry points 
for arrivals. Each of the two southern and northern routes converge into two merging points, resulting 
in  two descending paths for each of the two landing runways. Therefore, based on the coming direction 
(route entry point) and on the landing runway, there are 8 paths in total, as demonstrated in Figure 3. 

 

Figure 3. CDG airspace TMA landing routes. 

4.2.Airlines types operating at CDG 
Since in this paper we study the impact of ACM optimization within the framework of tactical ATM 
decisions on airlines, we will provide an overview of the airlines flying at CDG, classifying them 
according to their business model. In CDG there are more than 150 airlines operating (Paris Aeroport, 
n.d.-a), in Figure 4 and we can see the traffic share per airline type. In Figure 4, we can observe  that 
FSCCs dominate, carrying 84% of the traffic, followed by LCCs, which carry 10% of the operations. 
The CaC, ChC and RC carriers each contribute 2% to the traffic. Table 3 displays the contribution to 
the traffic by airline type, broken down into arrival, departure and total number of flights. 

 

 

Figure 4. Airline business model categories. 

Table 3. Traffic share by airline type. 

Airline type 
Traffic 

Arrival Departure Total 
FSCC 466 476 942 
LCC 61 57 118 
CaC 8 9 17 
ChC 9 9 18 
RC 10 10 20 



4.3.Experiments and results 
In this study, we will analyze how airlines are affected by an ACM optimization process. The ACM 
solution method is based on the work of Scala, Mujica Mota, Wu, et al., (2021). Two scenarios are 
analyzed based on the parameter “separation minima”. In the first scenario S1, this parameter keeps its 
default value, while in the second scenario S2, its value has been increased by 30%. The change of  this 
parameter is equivalent to the relaxation of one of the constraints, namely the airspace conflicts, as they 
directly depend on the setting of the minimum allowed separation between aircraft. Table 4 summarizes 
the scenario evaluated. 
 
Table 4. Scenarios evaluated 

Scenario Separation minima increase value 
S1 (Default) 0% 
S2 +30% 

 

4.3.1. Missed slots 
We define an arrival or departure slot as a time window of 10 minutes assigned to an aircraft in which 
it is supposed to land or take off. Therefore, we define a missed slot when an aircraft misses the 
opportunity of using this time window. In the ACM, decisions such as airspace delay or airspace delay 
directly affect the variable missed slots. In Table 5, the values of the variable missed slots are shown 
for each scenario. Table 5 displays that the most affected airline type is the FSCC, which obtains a high 
number of  missed slots in both scenarios. The most affected operations, for each of the airline types, 
are the arrivals. FSCC are also affected by the ACM solution as the percentage of missed slots are even 
higher than FSCC. While the CaC, ChC and RC airline types present high values of percentage of 
missed slots, their absolute values are rather small, as they do not represent a big share of the total traffic 
(see Table 3). Overall, these results show that for both scenarios S1 and S2, about 50% of slots are 
missed. Therefore, we can infer that the solutions to the ACM problem impact the airlines’ slot 
allocation planning, which might lead to the slot being lost for the next planned season and might also 
have  negative economic consequences. 

Table 5. Missed slots per scenario. 

Scenario Airline type 
Missed slots 

Absolute value Percentage value 
Arrival Departure Total Arrival Departure Total 

S1 

FSCC 306 153 459 65.66% 32.14% 48.72% 
LCC 43 26 69 70.49% 45.61% 58.47% 
CaC 4 3 7 50.00% 33.33% 41.17% 
ChC 7 6 13 77.77% 66.66% 72.22% 
RC 6 1 7 60.00% 10.00% 35.00% 
Total 366 189 555 66.06% 33.68% 49.77% 

S2 

FSCC 306 166 472 65.66% 34.87% 50.10% 
LCC 38 20 58 62.29% 35.08% 49.15% 
CaC 2 3 5 25.00% 33.33% 29.41% 
ChC 6 5 11 66.66% 55.55% 61.11% 
RC 10 3 13 100.00% 30.00% 65.00% 
Total 362 197 559 65.34% 35.11% 50.13% 

 

4.3.2. Disrupted operations 
In this work we define disrupted operations as any deviation from the airside planned operations. In 
this context, we consider as airside operation the landing/departing runway assignment. Given a pre-



planned assigned gate, the change in  the landing/departing runway changes the taxiway routing from 
runway to gate. In order to quantify the disrupted operations, we compare the two scenarios with the 
originally planned schedule, Table 6 summarizes the results obtained. 

Table 6. Disrupted operations values as runways changes. 

Scenario 
Runway changes 

Absolute value Percentage value 

S1 

Landing runway 
267 48.45% 

Departure runway 
85 15.12% 

Total 352 31.54% 

S2 

Landing runway 
299 54,16% 

Departure runway 
134 23.84% 

Total 433 38.79% 
   

Table 6 points out that the most changed runways are the ones for landing, by 48.45% and 54.16% in 
S1 and S2, respectively. The departure runways are changed to a lesser extent by 15.12% and 23.84% 
for S1 and S2, respectively. Fewer changes in runways occur in S1 compared to S2,  obtaining in total 
31.54% against 38.79% in S2. This can be seen also by the graph in Figure 5, where the runway 
assignment of the original and the two scenarios is demonstrated. Runway 27R and 26L are used for 
landings, while Runway 27L and 26R are used for departures. We can notice that in the two optimized 
scenarios the runways are more evenly distributed than in the original schedule, with a disproportion 
especially in the runways between Runway 26L (located in the south), which accommodates more than 
twice the number of landings, and Runway 27R (located in the north).The departure runways 
assignment does not change much between original schedule and the scenarios S1 and S2, confirming 
the results from Table 5.  

 

Figure 5. Runway assignment comparison between the original schedule and the optimized scenarios. 



4.3.3. Emissions 
Emissions related to aircraft fuel consumption are defined by two variables: extra time flown in the 
airspace and extra taxiway operations in the airside. The first variable is directly related to the airspace 
delay used in the ACM, since  any delay provided to aircraft will result in  longer flight time  for the 
aircraft leading to burning more fuel and creating more emissions. The second variable depends on the 
runway and terminal assignment, as the taxiway time will differ accordingly. In the ACM described in 
this work, the runway, both for landings and departures, can be changed affecting the taxiway time. 
Table 6 summarizes the main findings about the emissions generated in the airspace and in the airside. 
The indicators chosen for the evaluation of the airspace emission are the total and average extra time 
flown in the airspace; while concerning the airside we calculated the total taxiway time and the taxiway 
time delta, which indicates the difference of the total taxiway time between the original schedule and 
the two scenarios. Regarding the airspace emission indicators, the larger  their value, the more emission 
will be released. Similarly, for the airside emission indicators, if the total taxi time for the scenarios S1 
and S2 are greater than the original schedule, a positive value of taxiway time delta will be generated, 
which is translated into an extra taxiway time. Conversely, a negative value of taxi time delta represents 
a reduction in taxiway time. Emission-wise, a positive taxiway time delta means more fuel burned and 
therefore more emissions, and vice versa for a negative taxiway time delta. 
As it can be seen in Table 6, S1 obtained a higher total extra time flown in the airspace (8136.16) than 
in S2 (7915.08), which  is also reflected in a higher average extra time flown in the airspace per aircraft. 
The average values per aircraft are 12.73 and 12.38 for S1 and S2, respectively. The standard deviation  
is relatively high for both S1 and S2  compared to their average values, indicating high variability in 
the operations.  
Regarding the airside emission indicators, we obtained negative values for the taxiway time delta in 
both  scenarios S1 and S2, meaning that the ACM reduces the emissions due to the aircraft taxiing on 
the ground. S1 reduces the total taxiway time by 7.8% and S2 by 8.1% compared to the original 
schedule. On the one hand, ACM improves the airside emissions but, on the other hand, worsens them 
for the airspace emissions. 

Table 6. Comparison between the original schedule, S1 and S2 scenarios in terms of emissions generated in the airspace and 
in the airside. 

 
Original schedule S1 S2 

Total extra time flown 
in the airspace [min.] 

- 8136.16 7915.08 

Average extra time 
flown in the airspace 
per flight (standard 
deviation) [min.] 

- 12.73 (10.62) 12.38 (10.55) 

Total taxiway time 
[min.] 

5089.55 4687.80 4673.58 

Taxiway time delta 
[min.] (%) 

- -401.75 (-7.8%) -415.96 (-8.1%) 

 

5. Discussion 
By conducting this empirical study on the relation between ACM, tactical ATM decision, and airline 
operations, we found that ACM has significant  impact on airline operations in terms of missed slots, 
disrupted operations and emission. Most of the results revealed the negative impact on airlines, 
however, we also found positive aspects which led us to identify the following trade-offs: 

● Airline missed slots vs Air Traffic Controllers workload: The results indicated that airlines were 
affected by airspace and ground delay as they missed around 50% of their slots, which had a 



negative  impact. Nevertheless, the optimized solution of the ACM brought advantages to the 
air traffic controllers by reducing their workload as they will obtain schedules without conflicts. 

● Disrupted operations of airlines vs runway utilization balance: For many airlines, the landing 
and departure runways were changed, meaning that a different taxiway routing would take 
place. Since the  terminal was retained  as planned, it becomes clear that this would not be ideal, 
especially for FSCC airlines that have more traffic and therefore more influence on operations 
(e.g., Air France for CDG) . Conversely,  the results demonstrated  a more balanced runway 
utilization, which enhances the efficiency of the infrastructures and avoids potential bottlenecks 
on the taxiways.    

● Emissions generated in the airspace vs emissions generated in the airside: We found that 
airspace was affected by extra emission generated by delays given in the airspace. At the same 
time, the balanced use of the runway reduced taxiway time, which, in turn, reduced airside 
emissions. A more detailed study on the extent of the emission generated in the airspace and in 
the airside would be beneficial to evaluate this trade-off. 

In conclusion, the abovementioned trade-offs highlight the advantages and disadvantages of  
implementing the ACM. These trade-offs highlight the different perspective of stakeholders  on 
ACM implementation , with airport operators and air traffic controllers benefiting at the expense of 
the airlines. This suggests that a thorough solution to the ACM could be achieved if the  airline's 
point of view was also taken into account.  

6. Conclusions 
In this paper, we have conducted an empirical study to evaluate the impact of implementing  the ACM 
problem on airline operations. To assess the impact, we have defined three main variables, namely 
missed slots, disrupted operations and emissions. These variables affect the airlines from an operational 
and economical point of view. The obtained results revealed that these variables are negatively affected 
as we determined  that around 50% of slots were missed by airlines, between 31% and 39% of the 
taxiway routing operations were modified and extra emissions were generated in the airspace (about 
extra 12 minutes of time flown in the airspace). The specific case study highlighted that the most 
affected airline type was the FSCC, which amplifies the negative impact, as these airlines account for  
the largest share of the airport’s traffic. This work sheds light on potential trade-offs that arise when 
considering different stakeholders’ point of view such as airport operators, air traffic controllers and 
airlines. 
Through conducting this study, we learned that variables such as emissions and airlines fairness in terms 
of slots allocation should be included in an ACM optimization model to provide a more complete 
solution. This lays the foundation for a future research direction in which the ACM will be extended by 
considering the previously mentioned variables.  
These variables could be considered as cost factors in the ACM objective function, coming up with a 
multi-objective ACM problem. Due to the contrasting nature of these objectives, methods such as the 
Pareto front could be implemented for obtaining good solutions. 
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