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To reduce greenhouse gas emissions, countries around the world are pursuing electrification policies. In resi-
dential areas, electrification will increase electricity supply and demand, which is expected to increase grid
congestion at a faster rate than grids can be reinforced. Battery energy storage (BES) has the potential to reduce
grid congestion and defer grid reinforcement, thus supporting the energy transition. But, BES could equally
exacerbate grid congestion. This leads to the question: What are the trade-offs between different battery control
strategies, considering battery performance and battery grid impacts? This paper addresses this question using
the battery energy storage evaluation method (BESEM), which interlinks a BES model with an electricity grid
model to simulate the interactions between these two systems. In this paper, the BESEM is applied to a case
study, wherein the relative effects of different BES control strategies are compared. The results from this case
study indicate that batteries can reduce grid congestion if they are passively controlled (i.e., constraining battery
power) or actively controlled (i.e., overriding normal battery operations). Using batteries to reduce congestion
was found to reduce the primary benefits provided by the batteries to the battery owners, but could increase
secondary benefits. Further, passive battery controls were found to be nearly as effective as active battery
controls at reducing grid congestion in certain situations. These findings indicate that the trade-offs between
different battery control strategies are not always obvious, and should be evaluated using a method like the

BESEM.

1. Introduction

To reduce greenhouse gas emissions, countries around the world are
pursuing policies of electrification [1]. Electrification is the process of
replacing technologies powered by fossil fuels with electric alternatives
which are “typically more efficient, reducing energy demand, and have a
growing impact on emissions [reductions] as electricity generation is
decarbonised” [2].

In the residential sector, electrification is expected to lead to three
main areas of development: 1) Increasing distributed generation (e.g.,
from rooftop photovoltaic (PV) panels); 2) Electrification of residential
heating/cooling and cooking; 3) Transport electrification (e.g., electric
vehicle (EV) charging) [1,3-5]. These developments are expected to
increase both the quantity of electricity being transported on the elec-
tricity grid and the simultaneity (or coincidence factor) of power flows
on the grid [4,6,7]. As a result, grid congestion is expected to become
more common, forcing distribution system operators (DSOs) to limit

new grid connections [3,5,8,9]. Grid congestion occurs when there is
insufficient grid capacity to transmit available power from one location
to another [3]. Grid congestion can be quantified in terms of peak power
flows on the gird and the number of hours per year when power flows
exceed a certain percentage of grid capacity. Historically, DSOs have
resolved grid congestion issues by reinforcing the grid, but rates of
electrification are expected to outpace rates of grid reinforcement in the
coming years, leading to delays in electrification projects [3,10].
Therefore, it is of interest to investigate solutions which can defer grid
reinforcement so that electrification projects can proceed.

There are numerous proposals for deferring grid reinforcement, such
as implementing flexible distributed generation, demand side manage-
ment, power curtailment, local balancing market mechanisms and/or
energy storage [11,12]. Battery energy storage (BES) is particularly well
suited for grid reinforcement deferral due to its ability to reduce grid
congestion by managing power flows locally on the grid. However,
whether or not batteries will help reduce grid congestion in practice is
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largely dependent on the strategy used to control the battery [13-17].
1.1. Battery control strategies

BES can involve several stakeholders [18], but this paper focuses on
two principle parties: The battery owner and the DSO. At the time of
writing, European DSOs were not allowed to own or operate batteries
directly [19,20]. Therefore, ‘battery owners’ were assumed to be indi-
vidual households in this paper. From these stakeholders, battery
owners are generally concerned with the performance of the battery (e.
g., how much profit the battery can earn), while DSOs are generally
concerned with the grid impacts of the battery (e.g., the battery causing
increases or decreases in grid congestion) [18,21]. Currently, the battery
owner chooses how their battery is controlled, with little to no input
from the DSO.

Battery control strategies determine at which time and at which rate
a battery will be charged and discharged [22]. While batteries are
technically able to provide a variety grid services for the DSO [22-24],
batteries tend to be controlled such that they provide the most benefit
for the battery owner [25]. ‘Benefits’ can be measured in purely
technical-economic terms, but there are also less tangible benefits
associated with battery ownership, such as becoming more ‘energy in-
dependent’ (i.e., becoming less reliant on commercial companies and
DSOs for electricity supply) and resolving environmental concerns (e.g.,
behaving in a way which is perceived as being pro-environmental in an
effort to reduce the moral guilt experienced over climate change)
[26-29]. In general, a battery owner will be more satisfied with their
battery if they derive more benefit from it, however they themselves
define these ‘benefits’ [26]. Therefore, it is not necessarily predictable
how a battery owner will operate their battery.

This lack of predictability can be a particular concern for DSOs, who
want to ensure that batteries do not exacerbate grid congestion or cause
other problems on the grid. Such concerns are not unrealistic: studies
have shown how certain battery control strategies might worsen local
grid congestion, due to their relatively high operating power and
potentially high (dis)charge simultaneity [14-16]. These concerns are
evidenced by a 2023 regulation proposed in Germany which would
allow DSOs to throttle battery (dis)charge power at critical moments
[30]. Similarly, Dutch DSOs have stated the need to allow DSO control of
household and community batteries to prevent batteries from exacer-
bating grid congestion [31].

There have been other proposals to address these potential issues by
time-limiting consumer connection capacities or charging consumers in
proportion to their peak electricity import/export to incentivise peak
reductions [32]. For example, regulations in Flanders, Belgium intend to
passively reduce electricity peaks by charging consumers based on their
peak electricity consumption each month (i.e., capacity pricing) [33].
Similarly, some countries allow the DSO to actively control consumer
assets as the need arises (e.g., French DSOs being allowed to turn off
household water heaters for up to two hours per day) [34,35]. Allowing
active control of batteries creates its own set of challenges, such as
developing secure and reliable communications infrastructure, though
research targeted towards remote control and cyber-resilience of EV
charging (e.g., [36,371) could likely be applied to BES systems.

While batteries may increase grid congestion, there is also the po-
tential for batteries to reduce congestion, if controlled appropriately
[13]. Such battery control strategies may come with a (opportunity) cost
for the battery owner [13]. A study by Kalkbrenner [38] found that
while consumers preferred owning and operating batteries for their own
benefit, they were also willing to temporarily give up control of their
batteries to benefit the electricity grid. Similarly, it has been proposed
that battery owner participation in grid congestion management could
be increased using financial incentives [39], though it is unclear how
effective such methods would be in practice.

In other instances, it may be possible to restrict battery (dis)charge
power such that batteries both reduce grid congestion and maintain
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benefits for the battery owner. Restrictions could, e.g., be applied by
imposing a hard limit on maximum battery (dis)charge power through
regulation (i.e., passive control) or by overriding battery operations with
an external control signal (i.e., active control). E.g., a study by Sheng
Zhou et al. [15] found that limiting battery power to 27 % of rated ca-
pacity (i.e., reducing (dis)charge power from 3.2 kW to 0.86 kW) was an
effective means of passively reducing peak power flows on the grid while
having minimal impact on the battery owner's derived benefits. How-
ever, it is unclear if such findings hold true under different operating
conditions.

In summary, much of the literature surrounding battery control
strategies tends to focus on methods to address a specific problem, and
does not consider the viability or wider implications of such a control
scheme [15,40]. For example, Stecca et al. [40] note in a review of
battery control papers that the majority assumed that the DSO would
have some measure of control over battery systems. However, as noted
above, there are many communication, security and regulatory chal-
lenges which must be overcome to implement DSO control of batteries in
practice. Similarly, there is a societal question regarding how much
control a DSO should have over household batteries (e.g., should DSOs
be allowed to override normal battery operation at any time or only
during emergencies?). To add to this, it remains unclear what the trade-
offs are for the DSO and the battery owner if the DSO is allowed to
override normal battery operations. Therefore, to inform public policy
and BES regulations, it is of interest to estimate the impact batteries
could have on the grid generally and on the performance of the battery
itself (with respect to the battery owner's expectations), considering
different battery control techniques.

This leads to the main research question of this paper: What are the
trade-offs between different battery control strategies, considering bat-
tery performance and battery grid impacts? This paper answers this
question by evaluating the relative costs and benefits resulting from
different battery control strategies, considering different passive and
active battery control mechanisms. In this paper, passive battery control
refers to constraining the maximum rate of battery (dis)charge; Active
battery control refers to the DSO overriding normal battery operations to
use the battery for grid congestion management. Costs and benefits were
evaluated in terms of key performance indicators (KPIs) relating to
battery performance and battery grid impacts.

2. Methodology

The battery energy storage evaluation method (BESEM) was devel-
oped to analyse the relative grid impacts and performance of BES
considering different scenarios. The BESEM is an elaboration of a
method first proposed by van Someren et al. [41] and further elaborated
upon by van Someren [42]; the referenced works demonstrate the
generalisability and explainability of the BESEM. Fig. 1 shows the gen-
eral structure of the BESEM.

At its core, the BESEM consists of two models: An electricity grid
modelling tool and a BES model. The electricity grid modelling tool
simulates power flows on the electricity grid based on electricity grid
topology, load and generation profiles, BES location and BES (dis)charge
profiles. The BES model simulates battery (dis)charge profiles based on
the BES control strategy, BES characteristics, electricity market condi-
tions and electricity grid conditions.

The two models are integrated to create a feedback loop between the
two systems. This approach allows the two models to be run iteratively
to minimize or maximize a given goal, e.g., minimizing grid congestion.
Both models calculate various KPIs which are used to evaluate and
compare the relative impacts of different scenarios.

The following sub-sections describe the various components of the
BESEM. All data and models used in this paper are available at the 4TU
research data repository [43].
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Fig. 1. Battery energy storage evaluation method (BESEM) concept, consisting of two interlinked models (Electricity Grid Modelling Tool and BES Model). Arrows
indicate model inputs, with the link between the Electricity Grid Modelling Tool and the BES Model indicating iterative data flows between the two models; KPIs are

calculated when the iteration is complete.

2.1. Electricity grid modelling tool

As described by van Someren et al. [41], electricity grid modelling
can give important insights into the interactions between BES and the
grid. Therefore, it is important to model the grid in a way which is
representative of real-world behaviour. In this paper, Pandapower
(version 2.14.1) was selected to model the electricity grid. Pandapower
is an open-source software package developed by the Fraunhofer Society
for the Advancement of Applied Research and has been validated using
industry-standard software tools and a variety of case studies [44].
Pandapower uses the Newton-Raphson iterative method to solve power
flow equations using first principles (i.e., Ohm's law, Kirchoff's Laws and
Joule's Law), and treating the grid as a steady-state system (i.e., grid
transients and harmonics are not simulated) [45,46]. To improve model
run-times and prevent non-convergence results, it is common to simu-
late grids in Pandapower as a single-phase system and to omit thermal
effects [44]. These abstractions were applied in the BESEM.

The BESEM is able to operate at any time interval, but for the pur-
poses of this paper, a 15-min time interval was chosen. Fifteen minutes is
the common program unit in European electricity markets (i.e., the time
in which supply-demand mismatch must be resolved) [47]. Further, 15
min is generally considered a sufficient time resolution to capture reg-
ular grid congestion issues, since grid infrastructure is generally able to
withstand higher power flows over shorter time periods without
suffering additional degradation or outages [48].

As a final output, Pandapower calculates voltage levels, current flows
and power losses throughout the grid for each time step. These results
can then be analysed to identify congestion issues and bottlenecks
within the grid. These data can be used to inform battery control stra-
tegies (as described in section 2.2.2) and calculate grid impact KPIs, such
as peak loads and hours of grid congestion. The primary electricity grid
model inputs are described in the following sub-sections.

2.1.1. Grid topology

To create an electricity grid model, it is necessary to define the
characteristics and interconnections of relevant grid components.
Important input parameters include cable lengths and impedance
values, transformer capacities and efficiencies, and the location of loads
and generators. Pandapower treats the grid as a nodal network, where
each node is an infinite bus which acts as a junction between cables,
transformers and/or loads and generators.

2.1.2. Load and generation profiles

Each grid connection in the grid model requires a load and/or gen-
eration profile. Load and generation profiles may be representative of an
existing situation, or may be designed to simulate future scenarios, as
demonstrated by van Someren et al. [49]. E.g., to simulate the (future)
impacts of EV charging on a section of electricity grid, EV charging load
profiles can be added to various household connections on a grid model.

2.1.3. BES location

BES acts as a combined load/generator which can be charged or
discharged (or remain inactive) at each time step. As described in van
Someren et al. [41], the physical location of a BES system can affect the
performance and grid impacts of the BES. Therefore, it can be of interest
to compare different battery siting configurations to determine which
configuration produces a preferable result (e.g., it may be possible to
reduce installed battery capacity and/or reduce grid congestion by siting
batteries closer to loads). The location of each BES system being simu-
lated must be defined within the grid model, but may be changed be-
tween scenarios. The (dis)charge profile of each BES system is defined by
the BES model, described below.

2.2. Battery energy storage model

The BES model creates a (dis)charge profile for each battery. The
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battery's operation is determined by the battery control strategy, the
battery's characteristics and (potentially) electricity market conditions
and electricity grid conditions. This battery (dis)charge profile is fed into
the electricity grid model to evaluate the impacts of BES on the elec-
tricity grid.

The BES model also calculates battery performance KPIs, such as
electricity self-consumption rates, net electricity costs, and the number
of cycles the battery undergoes. The BES model inputs are described in
the following sub-sections.

2.2.1. Battery characteristics

A battery's characteristics determine the physical constraints under
which the battery must operate. The primary characteristics affecting
the battery's performance are the battery's available storage capacity,
maximum (dis)charge power, roundtrip efficiency, and location on the
grid [50-53]. The BESEM allows for additional details (such as battery
degradation) to be modelled if desired, though these were not imple-
mented in this paper.

2.2.2. BES control strategy

The BES control strategy determines at which times and which power
the battery will charge and discharge. In the BESEM, different BES
control strategies can be implemented to compare their relative effects
on battery performance and battery grid impacts. In this paper, three
BES control strategies were considered:

a) Self-consumption maximisation (SCM), which had the primary goal
of minimizing electricity imports and exports at the household level;

b) Electricity cost minimization (ECM), which had the primary goal of
minimizing net electricity costs at a household level by trading on the
day-ahead electricity market; and

c) DSO override (DO), which had the primary goal of reducing grid
congestion by allowing the DSO to override normal battery
operations.

In this paper, a SCM strategy was implemented by having the battery
charge whenever the battery owner had net PV generation, and to
discharge whenever the battery owner had net consumption. In either
case, the battery would (dis)charge at the highest rate possible without
causing additional electricity imports/exports. Electricity market prices
were not taken into consideration for this strategy.

An ECM strategy was implemented by creating a daily battery (dis)
charge schedule based on electricity day-ahead market prices. For each
day, the lowest and highest hourly market prices were compared. If the
difference between these prices was great enough to earn profits (e.g., to
overcome the costs associated with battery inefficiencies and degrada-
tion), the battery was set to charge and discharge at these times,
respectively, and the corresponding amount of battery capacity was
reserved. If the battery had capacity remaining, this process was
repeated for the second-lowest and second-highest hourly market prices,
etc. If the price differential was insufficient to earn profits, the battery
did not run. In this paper, the price differential required to cycle the
battery was set at 0.025 €/kWh, which would be considered a relatively
low minimum required yield [54], but this value was chosen to evaluate
the largest potential grid impacts of an ECM-controlled battery. Further,
the battery was limited to one full cycle per day. This constraint may
lead to sub-optimal results [54], but it was implemented here to simplify
battery control strategy implementation, and because it has been shown
that additional daily cycling does not significantly increase battery
profitability when considering the hourly, day-ahead electricity market
[54]. This control strategy assumed an hourly flexible energy contract
and an electricity net metering policy, wherein households only pay
tariffs on their annual net electricity imports (as exists in The
Netherlands at the time of writing).

DSO override (DO) is a proposed battery control strategy which al-
lows a DSO to temporarily override normal battery operation to reduce
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grid congestion. The DO strategy used (simulated) forecasts of grid
power flows based on the results from the electricity grid modelling tool.
These power flows were analysed to identify periods of grid congestion
(i.e., times when power flows exceeded the congestion threshold). The
battery was then scheduled to (dis)charge as needed to reduce grid
power flows below the congestion threshold value. The battery was also
scheduled to pre-(dis)charge as needed to ensure that sufficient battery
capacity was available during the congestion periods. If the battery had
insufficient capacity to prevent congestion, it would instead (dis)charge
to reduce peak power flows on the grid as much as possible. This was
done because the degree of grid congestion has traditionally been
defined in terms of peak power flows on the grid — reducing peaks in-
creases available grid capacity, from a DSO perspective.

Fig. 2 provides an illustrative example of how the different battery
control strategies were expected to behave on a day in June with high
generation peaks, resulting in negative electricity pricing in the midday
(dashed purple line). All times are given in local time.

The SCM strategy (orange line) charged the battery as soon as there
was net production (around 7:00, soon after sunrise). It then gradually
discharged the battery when there was net consumption (from around
18:00 to 7:00 the following day). Note that the orange line shows rela-
tively small battery charge and discharge powers. This occurred because
household loads were small relative to PV generation in the summer
months.

The ECM strategy (light blue line) charged the battery at 12:00
(when the lowest electricity prices occurred this day) and discharged the
battery at 20:00 (when the highest electricity prices occurred this day).

The DO strategy (dark blue line) charged the battery to reduce the
solar generation peak on the grid (flattening the dotted green line to the
solid green line from 11:00 to 14:00). It also pre-discharged the battery
(from 6:00 to 10:00) to ensure that sufficient battery capacity was
available to reduce the generation peak.

Appendix A provides flowcharts describing the algorithms used to
implement these battery control strategies.

2.2.3. Electricity market conditions

Electricity market conditions drive the behaviour of price-driven
battery control strategies, such as the ECM strategy described above.
To gain insight into how electricity market prices in particular can in-
fluence battery operations, annual price profiles for different years can
be used as inputs in the BESEM.

Other electricity market conditions can include the magnitude of
electricity feed-in tariffs, taxes, and electricity contract types (e.g., fixed
pricing vs. hourly pricing), among others.

2.3. Key performance indicators

The BESEM presents results in terms of KPIs calculated by the elec-
tricity grid and BES models. KPIs can give insight into the relative costs
and benefits of different scenarios. The KPIs used in this paper are
described in Table 1, and are divided into two categories: 1) Battery
performance KPIs (relevant for the battery owner); and 2) Grid impact
KPIs (relevant for the DSO). The formulas used to calculate these KPIs
are given in Appendix B.

3. Case study — NO GIZMOS project

In this paper, a case study was analysed to evaluate the trade-offs
between different battery control strategies in a practical setting. NO
GIZMOS' is a research project which aimed to establish a mechanism for
DSOs to control household batteries [55].

1 NetOptimalisatie voor Grootschalige Inpassing Zon- en windstroom Middels
Opslag en Software, or Grid Optimization for Large-Scale Implementation of
Solar and Wind Power Using Storage and Software
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Fig. 2. Battery (dis)charge schedules for a day with high PV generation, resulting from the SCM (orange), ECM (light blue) and DO (dark blue) battery control
strategies. Positive values represent battery charging and negative values represent battery discharging. For context, hourly electricity rates (purple) and MV grid
power flows with (solid green line) and without (dotted green line) DO-controlled batteries are also shown. For the MV grid profile, positive values represent net
consumption and negative values represent net production. Electricity market prices were multiplied by ten for clarity. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of KPIs used in this paper.

KPI name Unit Definition

KPIs for battery performance

Self-consumption kWh
energy

Net electricity profits €

The difference between household PV generation
and electricity exports

The net profits earned by during a given period,
considering hourly pricing on day-ahead hourly
electricity markets. It was possible for net
electricity profits to be negative, which was
interpreted as net costs.

The number of full battery (dis)charge cycles
incurred during a given period.

The number of full battery cycles incurred by
DSO override control (DO) during a given period.

Battery cycles n/a

DO override cycles cycles

KPIs for battery grid impacts
Peak grid load kw The maximum net electricity load on a given
section of the grid.

The maximum net electricity generation on a

given section of the grid.

Peak grid generation kw

Hours of load hr The number of hours when power flows from net
congestion electricity loads exceeded a given threshold
during a given period.
Hours of generation hr The number of hours when power flows from net
congestion electricity generation exceeded a given threshold

during a given period.

The NO GIZMOS case study was set in a rural village in the
Netherlands which had a relatively high penetration of solar PV systems:
approximately 230 kW of installed PV capacity divided among 155
houses, with an additional 600 kW of PV capacity in neighbouring
sections of the MV grid. The regional MV grid had a relatively low rated
capacity of 1 MW. For context, a local energy cooperative wished to
install an additional solar park, but this was not possible due to grid
congestion resulting from existing PV generation. Further, this section of
the grid had a relatively low priority for reinforcement, so it was un-
likely that the grid's capacity would be expanded in the near future. It
was therefore of interest to study how household batteries might be used
to reduce grid congestion and thereby allow a new solar park to be
connected to the grid. However, it was not clear how different battery
control strategies would affect grid congestion.

In the case study, nine household batteries were installed in the case
study area. Using the BESEM, different battery control strategy scenarios
were tested to evaluate their relative effects on battery performance and
battery grid impacts (i.e., the KPIs defined in Table 1).

The scenarios studied in this paper were broken down into different
categories, as depicted in Table 2. First, a reference case was simulated
with no batteries. All other scenarios were compared to this reference
case to determine their relative impacts. Then, batteries were run to
maximize household self-consumption (SCM) or minimize household
electricity costs (ECM). Within these, passive controls were applied by
limiting (i.e., output bounding) battery (dis)charge power to 15 kW, 12
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Table 2
Summary of case study scenarios.

Reference case: No batteries

Self-consumption
maximisation (SCM)

Electricity cost
minimisation (ECM)

Passive control 0.5-15 kW 0.5-15 kW
Active DSO override (DO) control ~ Yes  No Yes No

kW, 8 kW, 4 kW, 2 kW, 1 kW or 0.5 kW. A range of battery powers was
chosen to establish any trends associated with different KPIs, and to
ensure that minima/maxima were not overlooked. Additionally, active
DO control was either enabled or disabled for each scenario. With DO
enabled, the normal SCM or ECM battery control strategies were over-
ridden during instances of grid congestion (defined as grid power flows
exceeding 700 kW in this case study). All these scenarios were simulated
for a one-year period (01-04-2022 through 31-03-2023) to gain insight
into the relative impacts of different battery control strategies under the
same operating conditions.

The following naming convention was used to reference the different
battery control strategies described in Table 1: primaryCon-
trolStrategy DO. The ‘primary control strategy’ was either self-
consumption maximisation (SCM) or electricity cost minimisation
(ECM); If the primary control strategy name was followed by ‘DO’, then
distribution override was enabled, otherwise it was not. The following
sub-sections define the BESEM inputs and outputs which were used for
the case study.

3.1. Electricity grid model and load/generation profiles

The electricity grid modelled in the case study was based on existing
electricity grid infrastructure, and is illustrated in Fig. 3 below. As
shown, the area being modelled consisted of the LV grid behind two MV-
LV transformers (referred to as transformers A and B, indicated by grey
squares), which acted as interconnections with an external MV grid.
Both transformers had a rated capacity of 160 kW, which together could
account for up to one third of the power flows on the regional MV grid.
In this case, the LV grid was operated at 230 V and the MV grid was
operated at 10 kV.

The LV cables extended from the transformers in a radial pattern. In
Fig. 3, green dots indicate the locations of household connections/
junctures, and battery symbols indicate the locations of household bat-
teries. In total, there were 102 consumers connected to the two trans-
formers, 70 on transformer A and 32 on transformer B. Each LV cable is
labelled using the following format: Transformer.Cable#.Branch#. For
the branches in particular, the Oth branch was considered the main
cable, which was defined as the longest continuous cable segment. Other
branches were numbered numerically based on their relative position
from the transformers. Appendix C provides additional details of the
individual cable sections, including their type, impedance, maximum
rated current, length and number of consumer connections.

For the purposes of this case study, consumer load and generation
profiles were also created. Generation profiles were estimated based on
a survey of the number of PV panels and their orientations within the
case study area. Using local solar irradiation data [56], the method
proposed by Masters [57] was used to simulate household PV generation
profiles.

Load profiles were estimated based on one year of power flow
measurement data taken at the transformer level at a 15-min interval.
The simulated PV generation profiles were subtracted from these mea-
surement data to determine an average household load profile for each
transformer. Due to a lack of details, all consumer connections behind
each transformer used the same average load profile.

Fig. 4 illustrates the average consumer load profile (blue line) and
generation profile (yellow line) for one year at a 15-min time interval. In
these profiles, generation peaks tended to be relatively high but short
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lasting, while load peaks tended to be relatively low but longer lasting.
Further, average household consumption was estimated to be 3500
kWh/annum and average household generation was estimated to be
4000 kWh/annum.

3.2. Battery energy storage model

The batteries used in this case study had a nominal capacity of 10
kWh, of which 8 kWh was considered useable (to minimize battery
degradation, the top 5 % and bottom 15 % of battery capacity was not
used). The batteries had a maximum (dis)charge power of 15 kW and a
roundtrip efficiency of 95 %.

In the case study, electricity price data were used from the Dutch
day-ahead electricity market from 01/04/2023 to 31/03/2024 [58].
Notably, this period experienced negative pricing during the spring and
summer months due to surplus PV generation. This was the same period
during which transformer measurements were made to derive average
household load profiles. These historical data were used to maintain any
correlations between electricity market prices and electricity supply and
demand, as described by Tanaka, et al. [59]. Regarding other market
conditions, this paper assumed that households only paid tariffs on
annual net electricity imports (i.e., net metering, as exists in the
Netherlands at the time of writing) and that all consumers had hourly
flexible energy contracts.

For the case study, the battery control strategies described in Table 2
(i.e., SCM, ECM, DO and the variations therein) were simulated using
the BESEM.

3.3. Key performance indicators

The KPIs described in Table 1 were calculated as outputs from the
BESEM for all scenarios. These KPIs were selected because they give a
range of insights into battery performance and battery grid impacts,
with the relevance of each KPI varying per scenario. The KPI values are
presented in the Results section, and their implications are described in
the Discussion section.

3.3.1. Sensitivity analysis

A sensitivity analysis was also performed to gain additional insight
into how the KPIs addressed in this case study were impacted by changes
to various model input parameters. In this paper, a summary of the most
relevant sensitivity results are presented; a more thorough sensitivity
analysis has been published by van Someren [42]. In this sensitivity
analysis, the following model input parameters were varied, and their
range of tested values are summarised in Table 3:

1) Battery capacity: The amount of electric energy which can be func-
tionally stored in each battery.
2) Capacity pricing: With capacity pricing enabled, households were
fined €0.20 for each quarter hour their net household import/export
exceed 8 kW.
ECM cost threshold: The minimum profitability required for the ECM
battery control strategy to cycle the battery. This parameter is
representative of how degradation costs affect battery cycling fre-
quency, although it is only pertinent to the ECM and ECM_DO
scenarios.
Electricity price standard deviation (SD): Two different electricity
price profiles were tested. These profiles were compared with one
another based on the relative SD in prices over a year. The price
profiles were: a) a typical annual price profile in the Netherlands
from 01/04/2023 to 31/03/2024; and b) a volatile price profile in
the Netherlands, from 01,/04/2022 to 31/03/2023.
Electricity tariffs: Electricity tariffs were applied as a fixed percent-
age of the quarter hourly electricity costs/profits of individual
households. E.g., with a 20 % tariff rate, all electricity imports cost
20 % more and all electricity exports earned 20 % less.
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Fig. 3. Schematic overview of the modelled grid area, including household connections/junctures (green dots), battery locations (battery symbols) and transformer
locations (A and B, represented by grey boxes). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 4. Simulated average consumer load profile (blue line) and generation profile (orange line) for one year. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Table 3
Summary of input parameters and the range of values tested. The reference case
is indicated by the underlined values.

Input parameter name Unit Range of values tested
Battery capacity kWh 10, 30

Capacity pricing n/a True, False

ECM cost threshold €/kWh 0.05, 0.20

Electricity price standard deviation n/a 45.3,132.3
Electricity tariffs % 10, 40

Grid congestion threshold kw 700, 1000

Generation scaling % 100, 200

Load scaling % 100, 200

6) Grid congestion threshold: The level of MV grid net power flows (i.e.,
grid loading) above which the DO battery control strategy is enabled.

7) Generation scaling: PV generation scaling was applied to all house-
hold generation profiles in the case study area. This was meant to
represent growth in household electricity generation.

8) Load scaling: Load scaling was applied to all household load profiles
in the case study area. This was meant to be roughly representative of
growth in household electricity consumption.

Sensitivity results were calculated in terms of the relative change in a
KPI's value compared to a reference scenario. In this case, the reference
scenario used the SCM_DO battery control strategy with the underlined
values in Table 3 as model input values. The SCM_DO control strategy
was chosen as a common reference to allow comparisons between
different battery control strategies, and to prevent divide-by-zero issues.
Input values were varied independently to determine their individual
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impacts on the various KPIs.

For each KPI and for each varied input value, eq. 1 was used to
calculate KPI sensitivity, where KPI,,, is the KPI value resulting from the
new model input value (i.e., the non-underlined value in Table 3), KPL.s
is the KPI value resulting from the original model input value (i.e., the
underlined value in Table 3), KPIscy po is the KPI value resulting from
the original model input value using the SCM_DO battery control strat-
egy, Inputye,, is the non-underlined input value in Table 3, and Inputys is
the underlined input value in Table 3.

(KPInew*KPISCMDO ) _ (Kplmf*KPISCMDO )

KPIscmpy, KPIscmp

Sensitivity,,; = ABS

(Input,ww — Input,ef) / Input, @

Relative KPI sensitivity assessment.
4. Results
The results from the case study are described below, where the

relative impacts of the different battery control strategies on the various
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KPIs are highlighted. The KPIs are broadly separated into two categories:
those relating to battery performance and those relating to the grid
impacts of batteries. Further, a sensitivity analysis of the results is pro-
vided to illustrate how model results can fluctuate when certain input
parameters are varied.

4.1. Battery performance

Fig. 5 shows the results for the four KPIs relating to individual bat-
tery performance (y-axis), for different battery control strategies and
variable maximum battery (dis)charge power (x-axis). In the figures, ‘0’
battery power indicates the reference case, where no batteries were
present. The four graphs in Fig. 5 are described in the following sub-
sections.

4.1.1. (a) Self-consumption energy

Self-consumption is defined as the difference between household PV
generation and electricity exports. An increase in self-consumption in-
dicates that a household consumed more of their own PV generated
electricity. A decrease in self-consumption indicates that a household

Net electricity profits
450

400
350
300
250
200

150

100

50

0
0.5 1 2 4 8 12 15

Maximum battery power (kW)

(b)

DSO override battery cycles

Annual net electricity profits (euros/annum)

140
120
100

80

60

40
20 | I
. '
0.5 1 2 4 8 12 15
Maximum battery power (kW)

(d)

Annual DSO override cycles (cycles/annum)

ECM mECM_DO

Fig. 5. Battery performance KPIs for different battery control strategies and maximum battery (dis)charge powers, including: (a) annual self-consumption energy
(MWh); (b) annual net electricity profits (euros); (c) annual battery cycles; and (d) annual battery cycles used for DO.
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exported additional electricity to the grid, with negative values indi-
cating that electricity exports (in part, from batteries) exceeded PV
generation.

Fig. 5(a) shows the variations in self-consumption achieved by the
batteries for the different battery control strategy scenarios. Of the four
control strategies, the SCM control strategy (light orange) achieved the
highest amount of self-consumption. The amount of self-consumption
energy was consistent for all maximum battery (dis)charge powers
except 0.5-1 kW, which was slightly reduced due to the inability, at
times, for the battery to fully charge from surplus generation.

Employing the SCM_DO control strategy (dark orange) resulted in
decreasing self-consumption as maximum (dis)charge power increased.
The reason for this was that, in this case study, surplus generation was
the primary driver of grid congestion. As a result, the normal SCM
control algorithm was overridden to charge the battery from the grid
during moments of peak generation (i.e., importing surplus generation
from neighbouring houses), and pre-discharge the battery in preparation
for these moments (i.e., increasing grid exports). This had the net effect
of reducing household self-consumption. At lower maximum battery
(dis)charge powers, the impacts of DO on self-consumption were more
limited because there were often household-level loads and generations
of a similar power magnitude to offset (i.e., self-consume).

The ECM control strategy (light blue) tended to reduce self-
consumption as maximum battery (dis)charge power increased. This
was expected because this battery control strategy prioritised trading
electricity, which increased electricity imports and exports, thereby
reducing household self-consumption.

With the ECM_DO control strategy (dark blue), self-consumption
decreased continuously as maximum battery (dis)charge power
increased. However, unlike the ECM strategy, DO responded to local
grid congestion, and thereby offset local supply and demand to a larger
extent. This had the net effect of increasing self-consumption energy
relative to the ECM control strategy.

4.1.2. (b) Net electricity profits

Net electricity profits are defined as the amount of profits a house-
hold could earn by buying and selling electricity on the hourly day-
ahead market, assuming net metering.

Fig. 5(b) shows how battery profitability varied across the scenarios.
For the SCM strategy, battery profitability was relatively consistent at
different maximum battery (dis)charge powers, with a slight improve-
ment at lower powers. This was the result of the battery (dis)charging
too early at higher battery powers, thus missing the times with optimal
pricing. At lower battery powers, the battery (dis)charge period was
spread over more time, thus allowing the battery to (partially) (dis)
charge during periods with a higher net profitability.

Interestingly, the SCM_DO strategy earned more profits than the SCM
strategy in some scenarios. This was due to the SCM_DO control strategy
increasing the number of battery cycles per year by up to 1.8 times
compared to SCM control, as shown in Fig. 5(c). The increase in battery
profits for the SCM_DO strategy therefore reflected this increase in
additional energy trading at (generally) profitable market price differ-
entials. However, the profits earned per battery cycle were on average
lower for the SCM_DO strategy than for the SCM strategy.

The ECM strategy showed increasing battery profitability at higher
(dis)charge powers, because the battery was better able to exploit the
optimal times for electricity trading. Notably, because the electricity
market operated on an hourly basis, and the batteries had a useable
capacity of 8 kWh, the potential profits the battery could earn were the
same if the maximum battery (dis)charge power was 8 kW, 12 kW or 15
kW (i.e., the battery could fully cycle during the optimal electricity price
hour in all cases).

The ECM_DO strategy led to a decrease in annual profits of 15 % to
27 % relative to the ECM strategy, depending on maximum battery (dis)
charge power. This can be explained by the fact that local congestion did
not always coincide with electricity market rates (see 4.2.1). In practice,
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this meant that the ECM_DO control strategy was often charging and
discharging the batteries at non-optimal times, from a profitability
perspective.

4.1.3. (c) Battery cycles

Battery cycles are defined as the number of full battery charge/
discharge cycles incurred over one year. Fig. 5(c) shows the number of
annual battery cycles for each scenario. Notably, the SCM control
strategy was relatively consistent for all maximum battery (dis)charge
powers and relatively low compared to other control strategies. As noted
in section 4.1.1, the SCM control strategy was primarily constrained by
household electricity demand and did not discharge enough electricity
to fully cycle the battery each day.

In contrast, the ECM control strategy achieved the highest number of
battery cycles, and quickly plateaued at one cycle per day from a
maximum battery (dis)charge power of 1 kW onwards. This was possible
because the profit threshold required to cycle the battery was relatively
low in this case study, at €0.025/kWh. Daily fluctuations on the day-
ahead electricity market consistently exceeded this threshold, thus
allowing the battery to be fully cycled on a near-daily basis to earn
profits.

The SCM_DO and ECM_DO control strategies cycled the battery more
frequently as maximum battery (dis)charge power increased. This can
be explained by the grid impacts of the batteries, described in the
following sub-section, but in brief: As maximum battery (dis)charge
power was increased, the DO strategy used the increasingly available
battery power to reduce congestion to a larger extent, and thereby
cycled the battery more frequently. Notably, ECM_DO reduced battery
cycles relative to the ECM strategy because when the algorithm overrode
normal battery operations, it did not necessarily need the full battery
capacity to reduce grid congestion.”? In contrast, the SCM_DO strategy
increased battery cycling relative to the SCM strategy because the DO
strategy required relatively more battery capacity to reduce grid
congestion, and therefore cycled the battery more frequently.

4.1.4. (d) DO override cycles

DSO override battery cycles are defined as the number of full battery
cycles incurred by the DSO to manage grid congestion. This KPI provides
insight into how much electric energy the DSO required to reduce grid
congestion.

Fig. 5(d) shows how an increasing number of battery cycles (i.e.,
increasing battery capacity) was used for DO control at higher battery
(dis)charge powers. This was caused by the relatively high peak power
flows on the grid (reaching 831 kW for net load and 1102 kW for net
generation compared to the 700 kW congestion threshold). As a result,
the DO control strategies often needed to use as much battery capacity as
possible to reduce peak power flows on the grid as much as possible.

4.2. Battery grid impacts

While battery performance KPIs are an important metric for the
battery owner, it is also of interest to the DSO to evaluate the grid im-
pacts of batteries. Fig. 6 shows the four KPIs related to the grid impacts
of batteries (y-axis) for different battery control strategies and maximum
battery (dis)charge powers (x-axis). As with Fig. 5, ‘0’ battery power
indicates the reference case, with no batteries present. The four graphs
in Fig. 6 are described in the following sub-sections.

4.2.1. (a) - (b) peak grid load and peak grid generation
Peak grid load and peak grid generation are defined as the maximum
power flow on the grid resulting from net loads and net (distributed)

2 In this case study, battery capacity was fully allocated to either ECM or DO
control on a daily basis; capacity was not shared between different battery
control strategies on a single day.
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Fig. 6. Grid impact KPIs for different battery control strategies and maximum battery (dis)charge powers, including: (a) peak grid load on the MV grid (MW); (b)
peak grid generation on the MV grid (MW); (c) hours of load congestion per year; and (d) hours of generation congestion per year.

generation, respectively. This KPI is indicative of grid congestion
magnitude. Figs. 6(a) and 6(b) show the peak power flows on the MV
grid resulting from net loads and net generations, respectively.

Notably, the SCM strategy (light orange) had a limited impact on
peak loads and no impact on peak generations. Although increasing self-
consumption can help reduce peak power flows in theory, in this case
study the SCM-controlled batteries had no incentive to (dis)charge
during times with peak load/generation due to net metering. As a result,
the batteries were often fully (dis)charged before peaks occurred, and
therefore could not reduce peaks on the grid.

For the ECM control strategy (light blue), a mismatch between local
supply and demand with national electricity market prices frequently
led to battery capacity being unavailable during (local) peak load/
generation periods. This mismatch occurred because, in the project area,
the majority of rooftop PV panels (including the nearby solar farms,
which were installed on barn roofs) had a south-west orientation,
whereas nationally PV panels tended to have a more southerly orien-
tation on average. As a result, local peak generation from PV tended to
be delayed relative to national peak PV generation and the
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corresponding market dips. However, when maximum battery (dis)
charge power was constrained to 0.5-2 kW, the batteries were forced to
(dis)charge over a longer period of time. As a result, the ECM strategy
was more likely to (dis)charge during times with peak power flows on
the grid, which incidentally led to reductions in peak grid loads and peak
grid generations by up to 4.2 % and 1.5 %, respectively.

In contrast, the SCM_DO (dark orange) and ECM_DO (dark blue)
control strategies were able to reduce the peak grid load by up to 4.4 %
and the peak grid generation by up to 4.3 %. The higher the available
battery (dis)charge power, the more effectively the DO strategies were at
reducing peak power flows on the grid, until a plateau was reached. This
plateau was the result of the limited battery capacity available, which
made it impossible for the batteries to reduce peak power flows on the
grid beyond a certain point.

The fact that the DO-controlled batteries could more effectively
reduce peak generations than peak loads had to do with the character-
istics of these power flow profiles in this case study. In general, peak
generations in this case study tended to be relatively high but short
lasting, whereas peak loads tended to be relatively low but long lasting
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(as noted in section 3.1). The effect of this was that less energy was
required to offset peak generations than peak loads. As a result, the
batteries, with their limited available capacity, were better able to
reduce peak generations than peak loads in this case study.

4.2.2. (c) - (d) hours of load congestion and hours of generation congestion

Congestion hours are defined as the number of hours per year when
grid power flows exceeded 700 kW, with power flows being attributed to
either net loads or net (distributed) generation. This KPI is indicative
grid congestion frequency. The hours of annual congestion from net
loads and net generations are shown in Figs. 6(c) and 6(d), respectively.
As with the peak power flows, the SCM strategy had a limited impact on
grid congestion hours. Interestingly, the ECM strategy was able to
reduce the hours of load congestion when maximum battery (dis)charge
power was constrained. This resulted from the fact that constraining
battery (dis)charge power prolonged the duration of battery (dis)
charging, making it more likely that the battery would operate during
periods of grid congestion, thereby reducing grid congestion
incidentally.

Notably, the ECM_DO and SCM_DO strategies showed less reductions
in grid congestion hours than the ECM strategy in some scenarios. This
occurred because the DO strategies prioritised reductions of peak power
flows over reductions of grid congestion hours. Because peak power
flows could be relatively large compared to the available battery ca-
pacity, minimizing these peaks did not necessarily reduce these power
flows below the grid congestion threshold.

It should be noted that none of the battery control strategies led to an
increase in grid peak power flows or grid congestion hours in this case
study.

4.3. Sensitivity analysis

Tables 4 through 7 illustrate the relative change in KPI values
compared to a reference scenario for the different battery control stra-
tegies. It should be noted that in the following tables it is not possible to
directly compare sensitivities between KPIs, so each column should be
interpreted separately. However, since all results were calculated using
a common reference case, it is possible to compare sensitivity results
between different battery control strategies (i.e., between the same
columns on different tables).

5. Discussion
In this paper, the BESEM was used to evaluate the effects of different
battery control strategies (considering both active and passive controls)

on battery performance and battery grid impacts. The following sub-
sections discuss the implications of the of the case study results.

5.1. Results analysis — Battery performance

The results from the case study indicated that actively controlling

Table 4
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household batteries for grid congestion management tended to come at a
(opportunity) cost for the battery owner. The more that DO was used,
the greater the reduction in the primary battery performance KPIs (i.e.,
self-consumption energy for SCM and net electricity profits for ECM).
However, active DO control could also be seen increase secondary bat-
tery performance KPIs (i.e., net electricity profits for SCM and self-
consumption energy for ECM). Therefore, while DO did lead to an op-
portunity cost for the battery owner's primary goal (e.g., maximising
battery profitability), it could also be seen to benefit the battery owner in
other ways (e.g., reducing electricity imports/exports).

In addition, passively controlling household batteries by constrain-
ing maximum battery (dis)charge power was found be more situational
on its impact the battery owner's primary goal (i.e., increasing self-
consumption energy for SCM or net electricity profits for ECM). For
the SCM control strategy, limiting maximum battery (dis)charge power
had almost no impact on the rates of self-consumption, and in fact
increased battery profitability to a limited extent. In contrast, the prof-
itability of the ECM strategy was reduce by up to 30 % when limiting
maximum battery (dis)charge power.

These results indicate that it is important to consider several battery
performance KPIs when using household batteries for grid congestion
management, and to design incentives/compensations for battery
owners accordingly.

5.2. Results analysis — Battery grid impacts

This case study found that the SCM and (unconstrained) ECM control
strategies had limited impact on peak power flows on the grid, reducing
them by less than 1 %. In contrast, using passive battery control to
constrain the (dis)charge power of ECM-controlled batteries led to peak
power flow reductions of up to 4.2 %. Using active DO battery control
reduced peak power flows by up to 4.4 %.

These results indicate that passive and active battery controls can
have comparable effectiveness, depending on the battery control strat-
egy used and the wider circumstances where the battery is implemented.
Since passive battery controls are easier to implement in practice (e.g.,
no communication infrastructure is needed to affect battery control),
these results support an argument to passively control household bat-
teries through regulation. However, the case study results also indicate
that passively controlling batteries may have limited to no beneficial
grid impacts if the batteries are controlled in a different way (e.g., as
with the SCM-controlled batteries). It is therefore important to consider
how incentives/regulations will drive battery behaviour before deter-
mining how passive battery controls might help reduce grid congestion.

Relatedly, while the battery control strategies studied in this paper
had no adverse grid impacts, other battery control strategies (e.g.,
aggregating household batteries to act on grid balancing markets) may
lead to increases in local grid congestion. Such impacts could theoreti-
cally be limited through passive battery controls. However, active DO
controls may be harmful in such circumstances as batteries are
controlled for cross purposes. Such alternate battery control strategies

SCM battery control strategy - Relative impact of input parameters (left column) on KPIs (top row). White shaded cells represent little to no impact; Yellow cells

represent middling impact; Green cells represent large impact.

KPI / Self- Electricity Battery Override Peak Peak Load congestion Generation congestion
Input Parameter consumption profits cycles cycles load generation hours hours
Battery capacity 1% 0 % 18 % 0 % 0 % 0 % 0% 0%
Capacity pricing 0% 0% 0% 0% 0% 0% 0% 1%
ECM cost threshold 0 % 0 % 0 % 0% 0% 0% 0% 0 %
Electricity price SD 0% 125 % 0% 0% 0% 0% 0% 0%
Electricity tariffs 0% 11 % 0% 0% 0% 0% 0% 0%
Grid congestion 0 % 0 % 0 % 0 % 0 % 0 % 363 % 244 %
threshold
Generation scaling 17 % 194 % 13 % 0 % 0% 39 % 15% 119 %
Load scaling 109 % 153 % 25 % 0% 7 % 5% 226 % 18 %
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Table 5
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ECM battery control strategy - Relative impact of input parameters (left column) on KPIs (top row). White shaded cells represent little to no impact; Yellow cells

represent middling impact; Green cells represent large impact.

KPI / Self- Electricity Battery Override Peak Peak Load congestion Generation congestion
Input Parameter consumption profits cycles cycles load generation hours hours
Battery capacity 156 % 118 % 0 % 0 % 2% 1% 15 % 5%
Capacity pricing 125 % 622 % 0 % 0% 0% 0% 1% 1%
ECM cost threshold 52 % 53 % 130 % 0% 0% 0% 16 % 2%
Electricity price SD 73 % 72 % 0 % 0 % 0 % 0 % 0 % 0 %
Electricity tariffs 0% 32% 0% 0 % 0 % 0 % 0% 0 %
Grid congestion 0 % 0% 0 % 0% 0% 0% 332 % 235 %
threshold
Generation scaling 136 % 105 % 0 % 0 % 0% 39 % 13 % 119 %
Load scaling 208 % 335 % 0 % 0% 6 % 5% 218 % 19 %

Table 6

SCM_DO battery control strategy - Relative impact of input parameters (left column) on KPIs (top row). White shaded cells represent little to no impact; Yellow cells

represent middling impact; Green cells represent large impact.

KPI / Self- Electricity Battery Override Peak Peak Load congestion Generation congestion
Input Parameter consumption profits cycles cycles load generation hours hours
Battery capacity 31 % 16 % 18 % 11 % 4% 2% 15 % 4%
Capacity pricing 0 % 0 % 0 % 0 % 0% 0% 0% 0 %
ECM cost threshold 0 % 0 % 0 % 0% 0% 0 % 0% 0 %
Electricity price SD 0 % 126 % 0% 0% 1% 0% 0 % 0 %
Electricity tariffs 0 % 15 % 0% 0% 0% 0% 0 % 0%
Grid congestion 121 % 29 % 94 % 212 % 5% 0% 233 % 232 %
threshold
Generation scaling 14 % 205 % 34 % 41 % 0 % 39 % 13 % 126 %
Load scaling 86 % 213 % 10 % 5% 2% 5% 224 % 18 %

Table 7

ECM_DO battery control strategy - Relative impact of input parameters (left column) on KPIs (top row). White shaded cells represent little to no impact; Yellow cells

represent middling impact; Green cells represent large impact.

KPI / Self- Electricity Battery Override Peak Peak Load congestion Generation congestion
Input Parameter consumption profits cycles cycles load generation hours hours
Battery capacity 117 % 70 % 8% 11% 4% 2% 15% 4%
Capacity pricing 73 % 1221 % 94 % 0 % 0 % 0 % 0 % 0 %
ECM cost threshold 30 % 31 % 76 % 0 % 0 % 0 % 2% 0 %
Electricity price SD 41 % 98 % 53 % 0% 1% 0% 0% 0 %
Electricity tariffs 0% 26 % 0% 0% 0% 0% 0% 0%
Grid congestion 62 % 108 % 51 % 212 % 7 % 0% 233 % 232 %
threshold
Generation scaling 85 % 156 % 70 % 41 % 0% 39 % 13 % 122 %
Load scaling 153 % 296 % 91 % 5% 2% 5% 224 % 18 %

The above tables illustrate how certain KPIs are particularly sensitive to changes in certain model input parameters. Notably, the battery control strategy itself is the
main determinant of how sensitive a given KPI is to changes in a given parameter. These results are elaborated upon in the discussion.

require additional investigation to gain insight into how they might
affect battery-grid interactions.

5.3. Sensitivity analysis

Considering the SCM control strategy (Table 4), it can be seen that
the most impactful input parameters are load and generation scaling.
This can be explained by the fact that self-consumption is highly
dependent on the ratio of electricity consumption and production at a
household level. Changing this ratio will affect how the battery per-
forms, which consequently affects other KPIs (e.g., if electricity gener-
ation is higher, the battery will cycle more frequently). The impacts of
the grid congestion threshold, in this case, are merely incidental, since
raising the threshold by definition reduces the amount of grid conges-
tion which occurs. It is notable that increasing the volatility of electricity
prices also provided increased profitability for this control strategy.
Again, this is largely incidental (volatile electricity prices still largely
follow household supply and demand profiles), but it is notable how a
SCM-controlled battery can still benefit from increasing price volatility.
Finally, it is notable that increasing battery capacity did not significantly
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impact any KPIs, particularly self-consumption. This can be explained by
the fact that battery capacities were already well calibrated to matching
household supply and demand, and that insufficient demand (in the
summer months) and supply (in the winter months) are the main
limiting factors on improving household self-consumption.

Regarding the ECM control strategy, it is again observed that load
and generation scaling have a large impact on most of the KPIs. This can
be attributed to more surplus electricity to trade (for increased genera-
tion) and more household demand to offset, thus reducing electricity
imports and exports (for increased load, particularly in summer
months). Notably, battery profitability was shown to be relatively sen-
sitive to changes in renumeration schemes: Adding capacity pricing,
increasing the ECM cost threshold (i.e., increasing degradation costs),
increasing electricity tariffs and increasing electricity market volatility
all affected electricity profits to a relatively high degree. This is notable,
since it illustrates how susceptible the business case for ECM-controlled
batteries is to changes in public policy and regulations, as well as
changes in technological factors such as battery lifetime. These results
indicate the need for clear and consistent policy needed to promote
battery ownership.
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Looking at the SCM_DO and ECM _DO control strategies, the grid
congestion threshold was observed to have a relatively large impact on
most of the KPIs. This is logical, since this parameter determines how
frequently DO is enabled. As above, load and generation scaling also
have a relatively large impact on several KPIs, in part because they
directly result in higher peaks on the grid, and in part because they affect
the SCM and ECM portions of the control strategies, respectively, as
described above. Finally, the profitability of ECM_DO in particular was
found to be sensitive to changes in nearly all input parameters. As with
the ECM control strategy, this is indicative of how unpredictable the
business case can be for an ECM-controlled battery.

6. Conclusion

This paper analysed the trade-offs of different battery control stra-
tegies considering their effects on battery performance and battery grid
impacts. This analysis was carried out by applying the BESEM to a case
study of a rural village in The Netherlands. The BESEM combines an
electricity grid model with a BES model to simulate the interactions
between these two systems. In the case study, KPIs relating to battery
performance (relevant for the battery owner) and battery grid impacts
(relevant for the DSO) were compared for a number of different battery
control scenarios.

In general, the results from this case study indicated that household
batteries can help reduce grid congestion if active DO control and
(situationally) passive controls constraining battery (dis)charge power
are applied to BES. Using batteries to help reduce grid congestion tended
to provide fewer primary benefits to the battery owners (e.g., reducing
self-consumption energy for a SCM-controlled battery), but could in-
crease secondary benefits (e.g., increasing net electricity profits for a
SCM-controlled battery). Further, in certain situations, passive battery
controls were found to be nearly as effective as active battery controls at
reducing grid congestion.

In summary, BES has the technical potential to help reduce grid
congestion and defer grid reinforcement if the BES is appropriately
controlled. The costs and benefits for different stakeholders resulting
different battery control strategies are not immediately obvious, and
changes in certain input parameters (e.g., introducing capacity pricing)
can significantly impact battery performance and battery grid impacts,
as indicated in the sensitivity analysis in this paper. Therefore, different
battery use cases should be evaluated on a case-by-case basis using a
methodology such as the BESEM. Using such a methodology to evaluate
practical battery applications can help inform policy and regulations
surrounding BES and its integration in the public electricity grid. For
follow-up research, the authors suggest that the BESEM could be used to
test the impacts of more sophisticated battery control strategies (e.g.,
deploying household batteries on electricity balancing markets) and/or
different financial incentives (e.g. capacity based contracts or time-of-
use tariffs). Further, the scope of the BESEM could be expanded to
include other congestion management strategies, such as PV curtailment
or EV charge control. Finally, societal aspects, such as battery owner

Appendix A. - Battery control strategy flowcharts
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acceptance of external active or passive battery controls should be
investigated.

Abbreviations

BES Battery energy storage

BESEM Battery energy storage evaluation method
DO DSO override

DSO Distribution system operator
ECM Electricity cost minimisation
EV Electric vehicle

KPI Key performance indicator

LV Low voltage

MV Medium voltage

PV Photovoltaic

SCM Self-consumption maximisation

SOC State of charge
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This appendix provides flowcharts describing the Self-consumption maximisation (Fig. 7), Electricity cost minimization (Fig. 8) and DSO override
(Fig. 9) battery control strategies. Table 8 lists the variables used in the flowcharts. Variable names are denoted in italics.

Table 8
List of variables used in flowcharts.
Variable name Unit Definition
i n/a The current timestep.
n n/a The total number of timesteps being simulated.
day n/a The current day.
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Table 8 (continued)

Journal of Energy Storage 134 (2025) 118100

Variable name Unit Definition

m n/a The total number of days being simulated.

availableCapacity kWh The amount of battery storage capacity not currently reserved for battery (dis)charge.

batteryCapacity kWh The maximum amount of useable battery storage capacity.

capacityRequirements ~ kWh The amount of battery capacity required to prevent MV_powerFlows from exceeding congestionThreshold

congestionThreshold kw The power flow on the MV grid above which the grid is considered congested.

costThreshold €/kWh  The minimum price differential required to charge and discharge the battery.

kWh_overload kWh The amount of energy transport which surpasses the congestionThreshold. This value counts only the greater of energy transport resulting from net
loads or net generations.

MV _powerFlows kw An array with the (forecasted) power flows on the MV grid for the upcoming day. Positive values represent net loads and negative values represent
net generations.

P battery kW An array showing the planned battery (dis)charge power at a given time.

P_battery_ max kw The maximum rate of (dis)charge for the battery.

prices €/kWh  An array of day-ahead electricity market price for the current day.

t high n/a The unreserved timeslot with the highest electricity price.

t low n/a The unreserved timeslot with the lowest electricity price.

t overload hours The amount of time during which energy transport which surpasses the congestionThreshold. This value counts only the greater of energy transport
resulting from net loads or net generations.

timeStep Hours The length of a timestep.

Fori=0ton

Net
electricity
generation and
battery
not full?

Net electricity
demand and battery
not empty?

Do nothing

Charge battery with
surplus generation up
to P_battery_max

Discharge battery to
fulfill net electricity
demand up to
FP_battery_max

Fig. 7. Self-consumption maximisation (SCM) battery control algorithm.
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orday=0tom

Load prices
for day

v

Schedule
Find t_high P_battery and —
and t_low for Reserve tlmeslpts P_parrery -1 availableCapacity by
unreserved t lowand t_high at timeslots P _battery * timeStep
timeslots t_low and t_high, -
respectively

T

P_battery = lower
of P_battery_max *

(pricesft_high] -

availableCapacity

prices[t_low]) = - 07 timeStep or
costThreshold? ' availableCapacity /
timeStep

Reset
avallableCapacity
= batteryCapacity.
Proceed to
next day.

Fig. 8. Electricity cost minimisation (ECM) battery control algorithm.
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Forday=0tom

Load MV_powerFiows
for upcoming day.

Increase congestion
threshold:
congestionThreshold +=

MV_powerFlows > alculate kWh_overioad kWh_overload >

congestionThreshold ? and t_overioad. batteryCapacity ? (kWh_overioad - batteryCapacity)
" /t_overioad
Reset
CongestionThreshold to
default value.
Proceed fo next day. Cycle through day to
plan battery schedule.
Fori=0ton
CONTINUE
MV_powerFlows[i] = P batteryfi] = 0

congestionThreshoid ?

P_batteryfi] = Cycle back in time to
congestion Threshold - pre-(dis)charge battery.
MV_powerFlows(i] Forj=ito0

(MV_powerFlows(j] +
P_battery_max) <
congestionThr. ?

P_batteryfj] =-1*
P_battery(i]

Fig. 9. DSO override (DO) battery control algorithm.
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Appendix B. - Key performance indicator equations

The following appendix lists the equations used to calculate the various KPIs defined in this paper. Table 9 defines all the variables used in the
following equations.

Table 9
List of KPI equation variables.

Variable name Unit Definition

i n/a The current timestep.

n n/a The total number of timesteps.

x n/a The grid location identifier for a given consumer/generator/battery.

batteryCapacityy kWh The (usable) storage capacity of the battery at location x.

batteryCyclesy n/a The number of full (dis)charge cycles incurred on the battery at location x.

batteryLossesx kWh The total energy loss incurred from (dis)charging the battery at location x.

chargeEfficiency % The efficiency losses when the battery is charged.

costsOverrides, € The costs of importing/exporting electricity from the battery at location x resulting from Distribution Override battery control.

dischargeEfficiency % The efficiency losses when the battery is discharged.

DO _schedule,; kw The battery (dis)charge power resulting from Distribution Override battery control for the battery at location x and timestep i. Positive values
represent charging and negative values represent discharging.

energyOverridesy kWh The amount of electric energy cycled through the battery at location x resulting from Distribution Override battery control.

generationCongestion ~ Hours The number of hours where the MV grid exceeds the congestion threshold due to net generations.

generationThreshold kW The net power flow on the MV grid below which the grid is considered congested.

loadCongestion Hours The number of hours where the MV grid exceeds the congestion threshold due to net loads.

loadThreshold kw The net power flow on the MV grid above which the grid is considered congested.

MV_netPowerFlow; kW The net power flow on the MV grid at timestep i.

MV _peakGeneration kw The peak generation on the MV grid.

MV peakLoad kw The peak load on the MV grid.

netProfits, € The amount of money earned (or lost) buying and selling on the day-ahead electricity market at location x.

nOverridesy hours The number of hours which DO actively controlled the battery at location x.

P batteryy.; kw The battery (dis)charge power at location x, timestep i. Positive values represent battery charging and negative values represent battery discharging.

P_generation,; kw The generation at location x, timestep i.

P_load,; kw The load at location x, timestep i.

P_netPowerFlowy ; kw The net power flow resulting from loads, generations and/or battery (dis)charge at grid location x, timestep i. Positive values were used to represent
loads and battery charging; negative values were used to represent generations and battery discharging.

prices; €/kWh  The day-ahead electricity market price for timestep i.

selfConsumption, kWh The amount of electricity generated at location x which is also consumed at location x.

timeStep Hours The length of a timestep.

Equation B.1 - Net grid load

PnetPowerﬂowx,i = Ploadx,i - Pgenerationxj + Pbatteryxyi (B].)

Equation B.2 - Self-consumption

Note that only values of P_netPowerFlow which are less than zero (i.e., net exports) are summed.

(P generationy. j +P, netPowerFlowx,i | X ﬁmesrep ) P _netPowerFlowx_i <0

selfConsumption, = n (B.2)
4 PHO Zl:o P_generation, ,, otherwise

Equation B.3 - Net electricity profits

netProfits, = ZLO — 1 x P_netPowerFlow,; x prices; x timeStep (B.3)

Equation B.4 - Battery capacity requirements

Note: The batteryCapacity value was continually summed for each subsequent timeStep until the over—/underloading condition is no longer true.
In this way, the battery capacity required to offset a prolonged period of grid overloading/congestion could be calculated.

if MV_netPowerFlow; > loadThreshold :

MV _peakLoad,;

loadThreshold < 0.0001:

while

17
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M VpeakLoad i

batteryCapacity. = batteryCapacity’ x loadThreshold (B.4a)
if MV_netPowerFlow; < generationThreshold :
.. MV_peakGeneration,
hile ——————————— < 0.0001 :
whie generationThreshold <
1 . o MV _peakGeneration,

— e B.4b

batteryCapacity, = batteryCapacity, x generationThreshold (B.4b)

Equation B.5 - Battery cycles

Note: Battery cycles were calculated based on the total amount of energy discharged from the battery (i.e., P_battery, ; < 0), thus excluding (dis)
charge losses.

P_battery,; x timeStep

, P_battery,; <0

batteryCycles, = Z:l:o batteryCapacity, (B.5)
0, otherwise
Equation B.6 - Battery losses
Note: Charge and discharge losses are only summed when battery power is greater than or less than zero, respectively.
_ ~x—n [ P_battery,; x chargeEfficiency x timeStep, Prattery,.; > 0
batteryLosses, = Zi:o{ —P _battery, ; x dischargeEfficiency x timeStep, P_battery,; < 0 * (B.6)
Equation B.7 - DSO overrides
. - n [ timeStep, DO_schedule,; # 0
nOverrides, = Zi:o{ 0, otherwise (B.7a)
energyOverrides, — Zin:o{ gbs (DO_schedule,.;) x timeStep, DO,s(c)itl}fjrl;lE 2 <0 (B.7b)
costsOverrides, — Zin:o{ gO,schedulex_i x prices; x timeStep, DO,sggzilxg el #0 (B.7¢)
Equation B.8 - Peak power flows
MV _peakLoad = Max(MV_netPowerFlowi S MV_netPowerFlow) (B.8a)
MV _peakGeneration = Min (M V_netPowerFlow; €¢ M V_netPowerFlow) (B.8b)
Equation B.9 - Hours of congestion
loadCongestion — Z;{ gmeStep‘, M VnetPowerFl;\,gl e> rvf/(;stidThreshold (B.9a)
generationCongestion — Zin:a{ gmeStep7 M V_netPowerFlo;;;l e< rjiesr;eraﬂonThreshold (B.9b)
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Appendix C. - Cable properties for the case study

Table 10
Cable properties for the case study.

Journal of Energy Storage 134 (2025) 118100

Cable Section Cable Type Cable impedance (22/km) Maximum current (A) Cable length (m) Number of households
A.0.0 NAYY 4x120mm2 SE Aluminum 0.225 + j0.080 242 458 33
A.0.1 NAYY 4x50mm2 SE Aluminum 0.642+ j0.083 142 147 3
A.l1.0 NAYY 4x95mm2 SE Aluminum 0.642+ j0.083 230 924 14
Al.1 NAYY 4x95mm2 SE Aluminum 0.208 + j0.080 230 187 1
Al2 NAYY 4x95mm2 SE Aluminum 0.478 + j0.080 230 104 8
A.2.0 NAYY 4x95mm2 SE Aluminum 0.478 + jO.080 230 294 7
A2.1 NAYY 4x95mm2 SE Aluminum 0.478 + j0.080 230 117 4
B.0.0 NAYY 4x95mm2 SE Aluminum 0.208 + j0.080 230 408 15
B.0.1 NAYY 4x95mm2 SE Aluminum 0.642+ j0.083 230 130 6
B.1.0 NAYY 4x150mm2 SE Aluminum 0.208 + j0.080 270 151 1*
B.2.0 NAYY 4x95mm2 SE Aluminum 0.478 + j0.080 230 332 5
B.3.0 NAYY 4x95mm2 SE Aluminum 0.642+ j0.083 230 440 5

" Note: Connection B.1.0 was connected to an active dairy farm, hence the relatively large cable capacity for a single connection.

Data availability

the

My data is freely available at a research databank and is referenced in
article.
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