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Abstract

In this paper, we focus on how the qualitative
vocabulary of Dynalearn, which is used for
describing dynamic systems, corresponds to the
mathematical equations used in quantitative
modeling. Then, we demonstrate the translation of a
qualitative model into a quantitative model, using
the example of an object falling with air resistance.

1 Introduction

Understanding the behaviour of dynamic systems (e.g.,
climate change, economic growth and recession, population
dynamics) is an important goal in secondary education.
Educational developments that strive for future-oriented
curricula emphasize this and consider practices such as causal
reasoning and modelling as important skills.

Modelling is widely recommended as a way to provide
learners with a deeper understanding of dynamic systems [1].
Modelling of a dynamic system on the computer can be done
both qualitatively and quantitatively. Both forms can and are
used in education [2, 3], but largely independent of each
other. Both forms of modelling have their unique ways of
representing and reasoning about system behaviour. As
learning tools, each has its own pedagogical approach and
offers distinct advantages and downfalls for understanding
systems [4, 5, 6, 7]. Quantitative modelling allows for precise
predictions and is closely aligned with the content of various
school subjects such as gravitational acceleration (physics),
predator-prey relationships (biology), the pig cycle
(economics), and global warming (geography). Qualitative
modelling, on the other hand, aligns more closely with the
human reasoning about systems and emphasizes causality
and the potential states of a system [8]. It also allows for
automated support [2].

Education will benefit from a software solution and
corresponding pedagogical approach that supports the
strengths of both modelling forms. The software should
integrate qualitative and quantitative representations of a
system. If learners construct a qualitative model, the software
can assist in translating it into a quantitative model, which
learners often find challenging. Conversely, moving from

quantitative to qualitative helps to verify whether the
constructed quantitative model assumes plausible causal
relationships.  This  approach also  aligns  with
recommendations from the scientific community [9]. It is
important to note that such software does not yet exist, and
that the potential impact of this innovation could extend to
many other sectors in society.

In this paper, we focus on how qualitative representations
of dynamic systems in Dynalearn [10] relate to mathematical
equations. Chapter 2 begins by outlining the qualitative
vocabulary of Dynalearn. We then discuss in Chapter 3 how
dynamic systems can be quantitatively described using
mathematical equations. A considerable portion of this paper,
Chapter 4, is dedicated to examining the relationships
between the qualitative vocabulary of Dynalearn and the
corresponding mathematical equations. Following this, we
use the dynamics of an object falling with air resistance as a
case study in Chapter 5 to demonstrate the translation of a
qualitative model into a quantitative model. The paper
finalizes with a conclusion and discussion in Chapter 6.

2 Qualitative modelling

Qualitative representations provide a framework for
modelling dynamic systems without relying on numerical
data. The Dynalearn software facilitates the construction of
these models at five distinct levels of complexity, each
introducing new ingredients to accommodate a more nuanced
description of system dynamics. In this paper we focus on
level 4. Hence, this section discusses the ingredients of the
Dynalearn software at that level.

Entities are either physical objects or abstract concepts,
characterized by one or more quantities—changeable
features of entities, such as temperature or speed. Each
quantity has a derivative, denoted as d, indicating its direction
of change: decreasing, constant, or increasing. Quantity
spaces define the possible states of the system by determining
the range of possible values for each quantity, represented as
alternating point and interval values. Correspondences (C)
can be added to co-occurring values to further determine the
possible states of the system. The relationships between
guantities are described by two types of causal relationships:



influence and proportionality. A causal relationship is of type
influence (1) when an active process, indicated by a quantity,
is the primary cause of a change in another quantity. This
relationship can be either positive (I+) or negative (I-),
depending on the directionality of the effect initiated by the
process. When the relationship is of type positive, a positive
value of the process results in an increase of the related
quantity, while a negative value results in a decrease. In cases
of a negative influence, a positive value of the process causes
a decrease in the related quantity, and a negative value causes
an increase. Causal relationships of type proportionality (P)
describe how changes in one quantity lead to corresponding
changes in another quantity, either in the same direction (P+)
or in opposite directions (P—). Exogenous influences are
external factors that have a continuous effect on the change
of a quantity. In the present paper we restrict to exogenous
influences that are either decreasing, constant, or increasing.
The behaviour of the system can be further described by
(in)equalities, which set ordinal relationships between
quantities (<, <, =, >, >). Calculi allow the execution of
qualitative operations such as addition and subtraction.

Simulation within Dynalearn starts with a scenario: the
initial settings that define the starting conditions of the model.
From these settings, a state graph is generated, visually
representing the possible states and transitions of the system.
Learners can use this graph to explore and understand the
behaviour of the system by navigating through different
states. Simulation preferences can be adjusted so that the
underlying Garp 3 reasoning engine [11] accounts for
possible changes in the first derivative of a quantity (i.e., the
second derivative), potentially leading to new states or
transitions. Value and inequality history offer an overview of
the changes, values and (in)equality of quantities throughout
the simulation.

3 Quantitative modelling

In the case of quantitative modelling in secondary education,
mathematical equations are used to describe and analyse how
systems evolve over time. These models typically use
differential equations, linear equations, and nonlinear
equations to describe system dynamics.

The differential equation y(t + At) = y(t) + m - x(t) - 4t
describes how the value of a function y at time t + At is
derived from its value at a previous time ¢ by adding an
increment that depends on the constant m, the value of x(t),
and the time step At. This formulation uses Euler's method, a
finite difference approach commonly used in simulations to
approximate the solutions of differential equations. Note, that
x(t) itself is a function of time, and its behavior directly
influences the behavior of y(t). For example, if x(¢t) > 0 and
constant, then y(t) increases linearly. Conversely, if x(t)
increases linearly (e.g., x(t) =mt), then y(t) exhibits
quadratic growth as each increment added to y(t) increases
over time. We use Euler here for keeping things simple,
though other numerical methods like the Runge-Kutta 4
(RK4) are also commonly employed for more accuracy and

stability. Numerical analysis for solving differential
equations is crucial when analytical solutions are not feasible.

Relationships between quantities in a dynamic system can
often be described using linear equations, such as y(t) = m -
x(t) + b, where m represents the slope and b is the y-
intercept, indicating the value of y when x = 0. Here, x(t)
denotes the value of x at time ¢. It's important to note that y(¢)
exhibits linear behavior relative to x(t); however, the overall
behavior of y(t) in terms of time depends on the behavior of
x(t). Specifically, y(t) will only show constant behaviour if
x'(t) = 0 (i.e., if x(¢) is constant over time). For example, in
modelling a dynamic system that describes the behaviour of
gases, the relationship between temperature and pressure is
typically linear under constant conditions.

Non-linear equations describe scenarios in dynamic
systems where quantities appear as exponents, products, or
other non-linear combinations. For example, the non-linear
equation y(t) = —m - x(t)? + b illustrates how the intensity of
light, y(¢), diminishes with the square of the distance, x(t),
from a point source as an object moves away over time.

After defining the equations of the dynamic system, a
simulation can be initiated. Initial values for the variables
must be set, along with the duration of the simulation and the
size of each time step. The values of each quantity are then
calculated for each time step using an integration method,
such as Euler's method.

4 Qualitative vocabulary and mathematical
equations

In this chapter, we describe how ingredient types of the
qualitative vocabulary relate to mathematical equations. For
clarity, when referring to quantities in qualitative
representations, we use X, y, z without the time notation t and
use the & symbol to indicate their direction of change. When
discussing mathematical equations, we denote these
quantities as x(t), y(t), z(t) to specify that they are functions
of time, and we use the prime notation to discuss the direction
of change of these quantities, for example, x'(t). For
discussing time steps, we use the notation 4t, and m and b are
used in equations to denote the slope and intercept,
respectively.

4.1 Exogenous influence, change, and quantity
space

Fig. 1 presents a qualitative representation of quantity x with
quantity space {0, +} and an increasing exogenous influence
acting on it. The initial value of x is zero (0). The simulation
result shows two consecutive states: in the first state, x is zero
and increasing (6x > 0), and in the second state (shown), x is
positive (+) and continues to increase. The mathematical
equation corresponding to the value of x is x(t + 4t) =
x(t) + x'(¢t) - At. The quantity space of x defines the range
as x(t) = 0. Given that 6x is increasing linearly, x'(t) > 0
and remains constant. Conversely, for a constant exogenous
influence, x'(t) = 0 and remains constant, while for a
decreasing exogenous influence, x'(t) < 0 and remains
constant.



Hence, to transition from a qualitative model to a
quantitative one, if the exogenous influence on a variable is
increasing or decreasing, then the numerical value of x'(t)
must be provided. Additionally, if the initial setting of x starts
at an interval, then the initial numerical value of x(¢), namely
x(0), must also be specified. Furthermore, the value of At also

needs to be set.
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Fig. 1. An increasing exogenous influence acting on quantity x
with quantity space {0, +}.The right side shows the state-graph
starting with the scenario followed by two consecutive states.
The left side shows the model and the simulation result of the 2"
state (in green).
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4.2 Causal relationships

Fig. 2 shows a qualitative representation with a positive
proportional relationship (P+) between quantities x and v,
with an increasing exogenous influence acting on x. The
simulation result demonstrates that as x increases, y also

increases.
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Fig. 2. Positive proportional relationship between x and y.

Assuming a linear relationship between x and y, the general
mathematical expression corresponding to this is y(t) = m -
x(t) + b, and the derivative is y'(t) = m - x'(t). Given the
positive proportional relationship, the value of m must be
greater than 0. Conversely, for a negative proportional
relationship holds m < 0. The value of b can be any real
number (b € R), as there are no quantity spaces defined for x

and y that dictate how the values of x and y are related. For
further discussion on the latter, see paragraph 4.3.

Fig. 2 could also depict a non-linear positive proportional
relationship between x and y, for example dose-response
relationship of a certain drug (Fig. 3).

Response

0
Dose
Fig 3. Non-linear positive proportional relationship between
dose and response.

When accounting for non-linear positive proportional
relationships, the qualitative representation in Fig. 2 could be
described by any mathematical equation whose first
derivative is always greater than zero. For example, consider
the equation y(t) = x(£)® + 3x(t). Following the chain rule,
the derivative is y'(t) = 3x(t)?-x'(t) + 3x'(t). If x'(t) > 0
and remains constant, then y'(t) > 0, which indicates that
y(t) is a strictly increasing function of x(t).

A

<4

Fig. 4. Positive and negative proportional relationship. The left
side shows the model and the simulation result of state 1 (in
green).

Fig. 4 shows a qualitative representation where x has a
positive proportional relationship with y, and z has a negative
proportional relationship with y; both x and z are increasing
due to an increasing exogenous influence. When simulation
preferences are set to only consider first changes in the first
derivative, the simulation result is ambiguous with three
possible final states. In state 1, y is decreasing (dy < 0); in
state 2 (not shown), y is constant; and in state 3 (not shown),
y isincreasing. The general mathematical equation describing



the change in y, considering a linear relationship between z,
X, and y, that corresponds to this representation is y'(t) = m, -
x'(t) —m, - Z'(t). Note the minus sign indicates that z(t) has
a negative proportional relationship with y(¢t). The
ambiguous simulation result arises not only because m,; and
m, are unknown but also because x'(t) and z'(t) are not
specified. For example, if y'(t) = 3x'(t) - 47'(t), and x'(¢) is
less than 4/3 times z'(t), then y(t) is decreasing (y'(t) < 0).
However, if x'(t) is equal or larger than 4/3 times z'(t), then
y(t) is constant or increases. Table 1 shows numerical
examples over a time step that illustrate the impact of
different ratios of x'(t) and z'(t) on y'(t) = 3x'(t) - 42'(t).
The table demonstrates that if the ratio between x'(¢t) and z’(t)
is 1, then y’'(¢t) < 0; if the ratio is 4/3, then y'(t) = 0; and if the
ratio is 2, then y'(t) > 0.

Table 1. The impact of different ratios of x’(t) and z’(t) on y’(t).

Y(t) =3x(t) - 42'(t)

X)) =1 X)) =1 x'(t) = 2
2@t = 1 Z(t) = 3/4 Z@t) = 1
t X@® Z@® y@o® @O 2@ YO O 2O YO

0 1 1 -1 1 -Ya 0 2 1 2
1 1 1 -1 1 -Ya 0 2 1 2

Fig. 5 shows the simulation result corresponding to the
qualitative representation in Fig. 4, with adjustments in the
simulation settings! to account for changes in the second-
order derivative. These adjustments reveal that transitions
between states 1, 2, and 3 are now feasible. Specifically, if
one or both relationships of y with x and z are non-linear, the
combined effect on 8y may depend on specific values. For
example, consider if the mathematical equation associated
with the qualitative representation of Fig. 4 isy(t) = x(t)® +
3x(t) — 10z(¢t). If both x(t) and z(t) increase consistently
(with x'(t) =1 and Z'(¢t) = 1) from =3 to 3, y(t) initially
increases, becomes constant, decreases, becomes constant
again, and finally increases (Fig. 6). This pattern corresponds
to the transitions along path 3 — 2 — 1 — 2 — 3 as shown
in the simulation result of Fig. 5.

Fig. 7 shows a qualitative representation of a causal
relationship with a positive influence (I1+) between x and y,
with x having quantity space {0, +}. The simulation result
indicates that x is positive and remains constant, which leads
to an increase in y (8y > 0). Note that y does not have a
quantity space. Assuming y increases linearly, the
corresponding mathematical equation that represents this
qualitative relationship is y'(t) = m - x(t). Given the positive
influence of x on y, m > 0. Furthermore, x(¢t) > 0 and is
constant.

Fig. 8 extends the qualitative representation shown in Fig.
7 by including quantity z with a negative influence (I-) on y,
and now Y has quantity space {—, 0, +}.

1 We differentiate between initial and simulation settings. The
former refers to starting values (and inequalities) when starting a

0RO

Fig. 5. Ambiguous simulation result with transitions between
states 1, 2, and 3.
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-40 -10z(t)

Fig 6. The combined effect of a nonlinear and linear relationship.
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Fig 7. Causal relationship of type influence.

The initial settings are such that y is 0, while both x and z are
positive (+) and constant (6x = 0 and 8z = 0). These settings
introduce ambiguity in the simulation result due to the
opposing influences: x has a positive effect on y, while z has
a negative effect, and their relative magnitudes are unknown.
If the influence of z on y is greater than that of x, y will
decrease and become negative (path 1 — 5); if the influences
are equal, y remains at zero (state 2); and if the influence of x
is greater than z, y will increase and become positive (path 3
— 4).

simulation. The latter refers to characteristics of the reasoning
engine [12].
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Fig. 8. A negative and positive influence acting on y.

Assuming y increases or decreases linearly, the
corresponding mathematical equations are y(t + 4t) = y(t) +
my - x(t) - At for the influence of x on y, and y(t + 4t) =
y(t) —m,-z(t)-At for 2z's influence, where m, < 0
indicating a negative influence. Combining these, the overall
expression for y(t) becomes y(t + At) = y(t) + (my - x(¢t) —
m, - z(t)) - At. Here, if my-x(t) <m,-z(t), then ()
decreases; if m, - x(t) = m, - z(t), then y(t) remains steady;
and if my - x(t) > m, - z(¢t), then y(t) increases.

Hence, to transition from a qualitative to a quantitative
model, the mathematical equations that describe the causal
relationships must be specified. Additionally, the numerical
values for the parameters of these equations, such as m and b,
must also be provided.

4.3 Correspondence and quantity space

Fig. 9 shows a positive proportional relationship between x
and y. An increasing exogenous influence is acting on x, and
X has quantity space {0, +}. Because the quantity space of x
includes no negative numbers, any equation for which y(t) is
increasing within x(t) = 0 is valid.

For example, if we assume a linear relationship between x
and vy, then the general mathematical equation y(t) =
mx(t) + b,withx(t) = 0andm > 0, isvalid. If we assume
a non-linear relationship, then y(t) = x(t)?, is also valid.
Fig. 10 shows that these two equations are strictly increasing
in the range x(t) = 0. Note that y(¢t) = x(t)? would not be
strictly increasing if the quantity space included negative
values for x.

Fig. 11 extends the representation shown in Fig. 9, now
defining quantity spaces {0, +} for both x and y. This
additional specification for y narrows the scope of the
proportional relationship between x and y. The initial values
are set with x at zero (0) and y positive (+). The simulation
result depicts two consecutive states: In state 1, x is zero and
increasing, while y is positive and also increasing. In state 2
(not shown), both x and y are positive and continue to
increase.

These initial settings inform the mathematical relationship
between x(t) and y(t). Given that at x(0) =0, y(0) > 0,
assuming a linear relationship, the general mathematical
equation would be y(t) = m - x(t) + b, where x(t) = 0 and
y(t) > 0. Conversely, if the initial values were x(0) > 0 and
y(0) = 0, then the equation would be y(t) =m-x(t) — b,
with x(t) > 0 and y(¢) = 0. If the initial values were x(0) = 0
and y(0) = 0, then y(t) simplifies to y(t) = m - x(¢t). Fig. 12

displays line graphs illustrating these three mathematical
relationships.
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Fig 9. A positive proportional relationship between x and v,
where x has quantity space {0, +}.

y(t)

y(©) =2(©)?

s X

y(;)~='”}}i x(t) — b

Fig. 10. Examples of linear and non-linear relationships between
X(t) and y(t) in the range x(t) = 0.
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Fig 11. Both x and y have quantity space {0, +}. The left side
shows the model and the simulation result of state 1 (in green).



y(t

y(ty= mx(t) — b

. x(8)

Fig. 12. Three mathematical equations corresponding to different
initial settings.

Fig. 13 shows a qualitative representation where both x and y
have quantity spaces {—, 0, +} and there is a bi-directional
correspondence (C) between these quantity spaces This

correspondence define that if x = —thany = —, if x = 0 than y
=0,and if x =+thany =+).
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Fig. 13. Bi-directional correspondence between quantity spaces.
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Mathematically any equation that goes through the origin and
is strictly increasing is valid. For example, if we assume a
linear relationship between x and vy, then the mathematical
equation y(t) = 2x(t). holds. If we assume a non-linear
relationship, then y(¢) = x(£)® + 3x(¢) is also valid. Fig. 14
shows that these two equations are strictly increasing.

4.4 Inequality and calculus

Fig. 15 shows a qualitative representation with quantity x
with quantity space {0, +, transition, ++} and quantity z with
quantity space {0, low, mid, high}. Quantity x has a positive
influence (I+) on y and quantity z has a negative influence on
y. The initial value for x is “++’ and for y the initial value is

‘low’. There is an (in)equality (=) between the ‘transition’
point from quantity x and ‘mid’ from quantity z. The
(in)equality provides information about the relative size of
the influences on y. Given that the value '++' for quantity x is
above 'transition’, and the value 'low' for quantity z is below
'mid’, the impact of x on y is greater than that of z.
Consequently, the simulation result indicates that y will
increase. The corresponding mathematical equation is y(t +
At) = y(t) + (my - x(t) — my - z(t)) - At, with my - x(t) > m, -
z(t), as also discussed in the accompanying text of Figure 8.

y(t)
y(t) 2x(t)

’,,r"/y(t)/; x(£)3 + 3x(t)

0 x(t)

Fig. 14. Two strictly increasing equations that go through the

origin.
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Fig. 15. An (in)equality between two points.

Fig. 16 shows a qualitative representation where x has a
positive proportional relationship with y and z has a negative
proportional relationship with y. Quantity x and z have
quantity space {0, +} and y has quantity space {—, 0, +}.
Quantity x has a decreasing exogenous influence acting on it,
whereas z has a constant exogenous influence acting on it.
There is a calculus that determines that the value of y is the
value of x minus the value of z (y = x — z). Initially, both x
and y are positive (+), with x being greater than y as indicated
in the inequality history. The simulation result shows 4
consecutive states. In state 1, x is positive and decreasing,
while x >z, hence y is positive and decreasing. In state 2, x is
still positive and decreasing, x is now equal to z (x = 2).



Consequently, y is zero and decreasing. In state 3, x is
positive, but x <z, hence y is negative and decreasing. In state
4, x is zero and steady, thereby y is negative and steady.

©-©-©0
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Fig. 16. A calculus specifies that the value of y is x minus z. The
grey coloured rectangles show value and inequality histories. For
the value history the arrows depict direction of change, the values
are show on the right side, and the state numbers are listed below
(e.g., x has value + and is decreasing in state 1). The inequality
history depicts the relationship between two quantities (e.g., x >
yinstate 1, x =y in state 2, etc.).

y(t)

yet) = x(t) +z(t)

0 YO =x(0) — 2(t)

v

Fig. 17. Lines showing how y(t) changes with x(t) and z(t), both
added and subtracted.

The corresponding mathematical equation that models the
calculus of the qualitative representation is y(t) = x(t) —
z(t), where x(t) = 0 and z(t) = 0, and y(t) can be any real
number. Note that dx is decreasing linearly, hence x'(t) <0
and remains constant, while y’(t) = 0 and remains constant,
implying that the rate of change of y(¢t) is negative (y'(t) <
0). Conversely, if the calculus involved addition, as in y = x
+ z, then y would always be positive because z remains
positive and x cannot be smaller than zero. Mathematically,
if y(t) = x(t) + z(t) and both x(¢t) and z(t) are non-
negative, then y(t) > 0. Fig. 17 illustrates the lines
corresponding to x(t), z(t), and both y(t) = x(t) — z(t) and
y(t) = x(t) + z(¢).

5 Dynamics of a falling object as an example

Fig. 18 shows a qualitative representation of the dynamics
involved when an object falls and encounters air resistance.
The quantities include gravitational force (Fg), air resistance
(Fair), net force (Fnet), acceleration (a), velocity (v), and
distance (s), each with a quantity space of {0, +}. The net
force acting on the object is calculated by subtracting air
resistance from gravitational force (i.e., Fnet = Fg — Fair).

Gravitational force has a positive proportional relationship
with net force and air resistance has a negative proportional
relationship with net force. Acceleration has a positive
proportional relationship with net force, and there is a
directed correspondence (C) between the quantity spaces of
net force and acceleration. Acceleration has a positive
influence on velocity, which in turn positively influences
distance. Velocity has a positive proportional relationship
with air resistance. The initial settings are that gravitational
force has a constant exogenous influence acting in it, velocity
and distance are both zero. Acceleration and air resistance
derive their values by the directed correspondences.

The simulation of this system with these initial settings
shows four consecutive states. In state 1, gravitational force
is positive and steady and air resistance is zero and about to
increase, resulting in a positive net force (Fnet > 0). This
positive net force results in acceleration, which in turn causes
an increase in velocity (8v > 0). As the velocity increases, air
resistance increases (dFair > 0), which decreases the net force
(8Fnet < 0). In state 2, velocity is positive (+) and thereby
distance increases (6s > 0) and air resistance is positive (+).
In state 3, distance is positive (+) and increasing (ds > 0). In
state 4, air resistance is equal to gravitational force and the
net force is zero (Fnet = 0). Thereby acceleration is zero (0)
and velocity is positive (+) and constant (3Vv = 0).
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Fig. 18. Qualitative representation of the dynamics involved
when an object falls and encounters air resistance. Value history
shows the first and second derivative.

To transition from the qualitative representation to an
accurate quantitative model, the mathematical equations,
along with several initial numerical values for parameters
need to be set. The mathematical equations corresponding to
the qualitative representation in Fig. 18, which describe the



system of a falling object that encounters air resistance, are
detailed in Table 2. The differential equations for velocity
v(t + At) and distance s(t + 4t) are linear. The starting values
of velocity and distance can be directly taken from the
qualitative representation (v(0) = 0 and s(0) = 0). The
equation for gravitational force, Fg (t + At), is also treated as
a differential equation. Typically, in software for numerical
simulation, Fg would be considered a constant; however, the
vocabulary of Dynalearn does not include an ingredient for
constants. The numerical starting value of gravitational force,
Fg(0), must be explicitly specified, as it remains constant
within a given interval and its exact value is otherwise
undefined. In numerical simulations, the parameters mass (m)
and the gravitational constant (g) are typically used to
calculate the gravitational force acting on the object (Fg =
m-g). Because Fg is represented in the model as a
differential equation but is intended to remain constant, the
parameter that governs the increase over time should be set
to zero (c = 0), ensuring that it does not change. The equation
for calculating air resistance incorporates several parameters:
Cd is the drag coefficient, which varies based on the object's
shape and its movement through the air; p represents the air
density; and A denotes the cross-sectional area of the object.
Additionally, the value of v(t) is squared within this context,
reflecting its impact on air resistance as velocity increases.

Table 2. Mathematical equations of the dynamics involved when
an object falls and encounters air resistance.

Equations Initial values

v (t+4t) = v(t) +a(t) - At m =.1,g = 981
s(t+A4t) = s(t) +v(t) - At p =134 = .05Cd = .3
Fg(t+At)= Fg(t)+ c- At v(0) =0

Fair(t) = Y% - Cd - p- A- v(t)? s(0) =0

Fnet(t) = Fg(t)- Fair(t) Fg(0) =m-g
a(t) = Fnet(t) /m At =1
c=0

Fig. 19 shows the simulation result for velocity per time,
based on the equations and initial values listed in Table 2. It
shows that velocity starts at zero and increases, aligning with
state 1 in Fig. 18. Next, velocity is increases at a decreasing
rate, corresponding to states 2 and 3, before finally stabilizing
at a constant value, which corresponds to state 4 in Fig. 18.
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Fig. 19. Simulation result of velocity per time based on equations
and initial values of Table 2.
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6 Conclusion and future work

In this paper, we focus on how the qualitative vocabulary of
Dynalearn, which is used for describing dynamic systems,
corresponds to the mathematical equations used in
quantitative modeling. We demonstrate how qualitative
relationships can be mapped to linear and nonlinear general
and differential equations. We also describe how quantity
spaces and correspondences define the range of the
mathematical equations. The initial values and inequalities
set the scenarios in the qualitative representation and provide
information about the starting values for parameters in the
mathematical equations. Furthermore, a qualitative calculus
that specifies operations such as addition or subtraction can
be expressed through corresponding mathematical equations.

Dynalearn serves as a learning tool, and for the integration
of quantitative modeling, a pedagogical approach should be
developed to optimize learning. This approach should include
support functions that assist learners in describing the
mathematical equations that correspond with the behavior of
the qualitative model, as learners often find this challenging
[4, 13]. For instance, the software could automatically
generate general equations which learners can then edit. For
example, the differential equations for v(t) and s(t) as shown
in Table 2 could be a derived from the quantitative
representation in Fig. 18 and presented as the default option.

Another option is to provide feedback based on whether
the behavior of the quantitative model aligns with the
qualitative model. Since an analytic solution is often not
feasible, analysis of whether behaviors align needs to be
derived from the simulation result of both models. From the
mathematical model, we know that there is no ambiguity in
behavior; all values and changes are determined, and the
simulation result should at least be a subset of a single path
of states from the simulation result of the qualitative model.
Remember, a transition in states in the qualitative simulation
indicates a change in value or derivative of one or more
quantities. To detect changes in the results of the quantitative
simulation, it is necessary to check at each time interval
whether derivatives change or certain thresholds are reached.
If discrepancies are identified between the behaviors,
feedback should be provided. For instance, if the results from
the quantitative analysis only partially align with a path of
states and a final state is not achieved, then the simulation
duration may not have been sufficient to reach those
subsequent states, or some parameters might need
adjustment. For example, if the simulation based on the
equations and initial values listed in Table 2 is run for an
insufficient duration, the velocity may not stabilize at its final
constant state.

With support options in place, the next step is to develop
an educational approach that optimizes learning in such
integrated software. For instance, a step-by-step approach
alternating between qualitative and quantitative modeling, or
initially constructing a complete qualitative model to
understand  system  behavior  conceptually  before
transitioning to a quantitative model. Further research on
optimizing learning in integrated qualitative and quantitative
modeling software is therefore essential.
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