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Abstract

Background: Approximately 5%-10% of elementary school children show delayed development of fine motor skills. To address
these problems, detection is required. Current assessment tools are time-consuming, require a trained supervisor, and are not
motivating for children. Sensor-augmented toys and machine learning have been presented as possible solutions to address this
problem.

Objective: Thisstudy examineswhether sensor-augmented toys can be used to assess children’sfine motor skills. The objectives
were to (1) predict the outcome of the fine motor skill part of the Movement Assessment Battery for Children Second Edition
(fine MABC-2) and (2) study the influence of the classification model, game, type of data, and level of difficulty of the game on
the prediction.

Methods: Children in elementary school (n=95, age 7.8 [SD 0.7] years) performed the fine MABC-2 and played 2 games with
a sensor-augmented toy called “Futuro Cube.” The game “roadrunner” focused on speed while the game “maze” focused on
precision. Each game had severa levels of difficulty. While playing, both sensor and game data were collected. Four supervised
machine learning classifiers were trained with these datato predict the fine MABC-2 outcome: k-nearest neighbor (KNN), logistic
regression (LR), decision tree (DT), and support vector machine (SVM). First, we compared the performances of the games and
classifiers. Subsequently, we compared the levels of difficulty and types of data for the classifier and game that performed best
on accuracy and F1 score. For al statistical tests, we used a=.05.

Results:  The highest achieved mean accuracy (0.76) was achieved with the DT classifier that was trained on both sensor and
game data obtained from playing the easiest and the hardest level of the roadrunner game. Significant differencesin performance
were found in the accuracy scores between data obtained from the roadrunner and maze games (DT, P=.03; KNN, P=.01; LR,
P=.02; SVM, P=.04). No significant differencesin performance were found in the accuracy scores between the best performing
classifier and the other 3 classifiers for both the roadrunner game (DT vs KNN, P=.42; DT vs LR, P=.35; DT vs SVM, P=.08)
and the maze game (DT vsKNN, P=.15; DT vsLR, P=.62; DT vs SVM, P=.26). The accuracy of only the best performing level
of difficulty (combination of the easiest and hardest level) achieved with the DT classifier trained with sensor and game data
obtained from the roadrunner game was significantly better than the combination of the easiest and middle level (P=.046).

Conclusions: The results of our study show that sensor-augmented toys can efficiently predict the fine MABC-2 scores for
children in elementary school. Selecting the game type (focusing on speed or precision) and data type (sensor or game data) is
more important for determining the performance than sel ecting the machine learning classifier or level of difficulty.
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Introduction

Background

Motor development is crucia in child development. Acquiring
motor skillsis not only essentia for daily life functioning but
also influences children’s cognitive and socia development [1].
Fine motor skills are a strong predictor of school results [2].
Motor skill development is not a fixed linear process. Every
child has his’her uniquelearning curve and pace, and their motor
skills develop by leaps and bounds [3]. Because of this unique
and unpredictable motor development path, it is important to
monitor children’s motor development over time instead of
assessing them once. That way, insight in the progress of their
motor devel opment can be given [3,4]. Children with fine motor
devel opment problems have difficultieswith learning fine motor
skills. They experience, for instance, problemswith school tasks
such aswriting or cutting or daily life activities such asclosing
azipper or tying shoelaces[4]. Intotal, 5%-10% of childrenin
elementary school have developmental motor problems [5,6].
When monitoring children’s motor development over time,
these motor development problems can be recognized at an
early stage. Consequently, appropriate diagnostic methods and
required therapy could be started in time, which may diminish
the effects of their motor devel opment problems.

Both worldwide and in the Netherlands, the Movement
Assessment Battery for Children Second Edition (MABC-2) is
themajor test for assessing children’s motor devel opment [5,7].
The MABC-2 consists of both tests for fine and gross motor
skills. Finishing the fine motor skill part of the MABC-2 (fine
MABC-2) takes approximately 15 minutes per child and requires
atrained supervisor [7]. Elementary school would be a natural
place to test children’s motor skills since devel opmental motor
problems affect cognitive development and school results and
viceversa. Proficient fine motor skillsare, for instance, essentia
for children to learn handwriting [8]. However, teachers in
elementary school report that they do not have the required
expertiseand timetotest al children, let aone to monitor them
all over time.

Sensor-augmented toys and machine learning have been
presented as possible solutions for the problems that teachers
experience with the current assessment methods [9,10]. Both
sensor data, regarding movements made with the toy, and game
data, regarding events that occur in the game, can be collected
while playing. Such a sensor-augmented toy can, for instance,
measure the smoothness of movements made with the toy or
how accurately a game was played. These data can be used to
train machinelearning algorithmsin predicting children’s motor
skill levels. After training and testing those machine learning
algorithms, they can be used to classify whether children have
fine motor development problems or not. Thus,
sensor-augmented toys can be used as an assessment tool for
signaling fine motor development problemsin children.

https://www.jmir.org/2021/4/e24237

Using sensor-augmented toys for indicating fine motor
development problemsin children has many advantages. First,
these toys do not require a trained supervisor and require less
instruction time. Moreover, such toys provide more secure data
collection compared to manually collected data. Furthermore,
playing games can safely be considered to be more enjoyable
for children than standard assessment methods. Last, since no
trained supervisor isrequired and children can easily play with
the toys in the classroom, the toys enable testing in a natural
setting instead of atesting environment. By playing gamesin
such a natural setting, the assessment can be kept implicit and,
therefore, children are not aware of undergoing the assessment
[11].

Related Work

Despite the advantages of evaluating children’sfine motor skills
with sensor-augmented toys and machine learning, limited
research is done in this field. Gamification of assessment
processes in other contexts such as cognitive assessments has
been studied before [12]. The systematic review of Lumsden et
al [12] shows that many gamified cognitive assessments have
been validated successfully. Although gamification in the field
of health and well-being is popular, most studies focus on
promoting physical activity levels, mental health, and people
with achronic disease[13,14]. Only afew studied gamification
inthe context of motor skillsand most of them involved training
instead of assessment [15,16]. Moreover, most of those studies
involved patients with motor problems that were primarily
caused by medical conditions such as cerebral palsy or stroke.
Those children are already seen by medical specialists who
monitor their motor development. In contrast, our study involved
children who may have adelay intheir motor skill devel opment
but do not have such diseases.

To the best of our knowledge, only 3 studies involved smart
toys for assessing children’s fine motor skills [17-19].
Vega-Barbaset al [17] only performed ausability and feasibility
test with smart toys that are potentially helpful for assessing
motor skills, but they have not used it for assessment yet. The
remaining 2 studies did use toys to evaluate children’s fine
motor skill levels, but both involved toddlers instead of
elementary school children. Moreover, they did not build a
classification model that might predict the outcome of current
motor skill assessment tests. Rivera et a [18] studied the
intraindividual variability. Guitiérrez Garciaet a [19] did build
aregression model, but this model has not been tested and used
to classify the fine motor skill level based on the sensor data
yet. In addition to the sensor datathat both studiesincluded, we
will asoinclude gamedata, that is, data about eventsthat occur
in the game, to study its additional value.

In preliminary research, we studied the possibilities to use
sensor-augmented toys for fine motor skill assessment [9,10].
We studied whether atoy called the Futuro Cube could be used
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to predict the outcome of the fine MABC-2 [9]. While agame
was played with the toy, information regarding events occurring
in the game was registered. In addition to these game data,
sensor data were collected by measuring the movements of the
toy with accelerometers inside the toy. These sensor data and
game data were used as input for several supervised machine
learning models, which then were used to classify the motor
skill level of children. Our previous study showed that amachine
learning model that uses sensor and game data of the Futuro
Cube as input has the potential to classify the fine motor skill
levels of children aged 7-8 years.

Objective of This Study

In this study, in which alarger number of children participated,
we improved our toy and game compared to that used in our
preliminary research. First, we explored whether additional
sensor features would improve the results. Second, we studied
a game in which children could choose their own pace in the
game since such e ementsarealso included inthefineMABC-2.
Therefore, we added a gyroscope to the toy to collect rotational
datain addition to accel eration data. Moreover, we designed an
additional game that focusses on precision instead of speed.
Based on these modifications, we will answer the following
research question: What is the influence of the classification
model, game, type of data, and level of difficulty (LoD) on
predicting the fine MABC-2 scores for children aged 6-9 years
with playing games with the Futuro Cube?

Methods

Recruitment

Children were recruited through their elementary school
teachers. Since we required a sufficient number of participants
having motor development problems for balanced class labels,
we included 2 elementary schools in Amsterdam that were
known for having a larger population of children with motor
development problems. Children who were between the age of
6 and 9 yearsand who werein the 3rd or 4th year of elementary
school were included. Fine motor development isimportant for
handwriting education. In the Netherlands, handwriting
education starts in the 3rd year of elementary school and is a
very important part of the 4th year of elementary school.
Teachers of those classes reported that they need to know
whether children’sfine motor development is proficient to start
such education. Therefore, we chose not to include childrenin
classes higher than the 4th year of elementary school. Pilot tests
of our game showed that the explanation of the game was too
hard for some children younger than 6 years. To make sure that
all children understood how to play games with the toy, we
chose not to include children younger than 6 years. Written
informed consent was obtained from parents or legal guardians
for participation of the child. A separate informed consent was
acquired for publication of the pseudonymized raw data. In
total, written informed consent for participation was given for
99 children and written informed consent for publication of the
raw data was given for 49 children. A pseudonymized data set
consisting of the sensor and game data of these children and
their corresponding fine MABC-2 scoresis available on request

https://www.jmir.org/2021/4/e24237

Bronset al

from the corresponding author. This study was performed
according to the Declaration of Helsinki [20].

Procedures

Test Setup

Each child was tested for 25 minutes. The fine MABC-2 was
taken in 15 minutes by atrained supervisor. Further, the child
played 2 different games on the Futuro Cube. Each game started
with a short instruction, followed by a warming-up phase in
which the child was able to become familiar with the game.
Half of the participants started with the fine MABC-2 and
subsequently played with the toy. For the other half of the
participants, the order was the other way around: first playing
with the toy and subsequently performing the fine MABC-2.

Determining the Level of Fine Motor Skills

The subscale for the measurement of fine motor skills of the
MABC-2 was used to determine the fine motor skill level of
the children. The fine MABC-2 test consists of 3 subtests. In
the first subtest, children had to place 12 pegs in a board with
12 holes. In the second subtest, children had to thread a lace
back and forth through alacing board with holes. Both the first
and second subtests were time-sensitive. The child wastold to
perform thetask as quickly as possible and thetime to complete
the task was denoted as the raw score of those subtests. In the
last subtest, children had to draw atrail with apencil. They had
to draw a single line and were not allowed to cross the trail’s
boundaries. This subtest was not time-sensitive and the raw
score consisted of the number of errors, that is, the number of
times that the drawn line crossed the boundaries [7]. The raw
scores of each subtest were summed to araw total score. Based
on the age of the participant, the raw total score was converted
to a percentile score. This score, between 0 and 100, indicates
the fine motor skill level of the participant compared to that of
the children within the same age band. The higher the score,
the better the fine motor performance of the participant
compared to children of the same age. According to the MABC
manual, a score in the 16th percentile or lower was defined as
likely to have fine motor development problems. All scoresin
the 17th percentile or above were defined as not having fine
motor development problems.

Toy and Games

The Futuro Cube, which is shownin Figure 1, isacommercial
toy that was adapted for research [21]. The cube has 9 colored
lights on each side. The accel erometer and gyroscopeinsidethe
cubetrack motion, senserotation, and measure orientation. The
cube is 52x52x52 cm with 9 colored light-emitting diodes
(LEDSs) on each side. Each square can beidentified by aunique
index number i O {0, ..., 53}. Thisindex humber can be used
to register the activation of an LED, including the color. The
toy contains a tri-axial accelerometer with an acceleration
sensitivity of +8G and atri-axia gyroscope with an angular rate
sensitivity of 2000 dps. Based on these inertial measurement
unit sensors, the orientation and the change of position can be
recorded. Data collected with these sensors will be referred to
as sensor data. The programming language PAWN2 was used
for creating the games that are played with the toy. In the
programmed script, we defined which information about events
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that occur during a game should be saved, for example, the
change of color of an LED during the game. Saved data about
the game will from now on be referred to as game data. While
playing, both the game data and the abovementioned sensor
data were registered. Bluetooth low energy was used to
wirelessly send all datain real timefrom the cubeto acomputer
with asamplefrequency of 110 Hz. In both games, ahighlighted
dot was moving on the cube’s surface by activating the colored
LEDs. In the first game, called the roadrunner game, the focus

Figure 1. Futuro cube.

Bronset al

was on speed. The second game, called the maze game, focused
on precision. In both games, no pointswere collected and neither
visual nor auditory feedback was given about how well the
game was played. In the roadrunner game, the velocity of the
moving dot was predetermined and the child had to follow this
speed. In the second game, however, the child was asked to
move the dot as precisely as possible through the path without
being tied to a certain pace.

In the roadrunner game, a green dot moved on the surface of
the cube. The player was asked to rotate the cube in order to
keep the spot on the top surface of the cube, which isshownin
Figure 2. The dot moved with a certain velocity on the cube
surface jumping from LED to LED. In case the spot was at the
center LED of a side, it randomly turned left or right or kept
moving forward. The velocity at which the spot moved was
defined as the LoD. This game had 3 LoDs: LoD 0 {0,1,2}.
The lower the level, the longer the spot remained at the same
place. Thus, level O was the easiest level and level 2 was the

hardest level. Thetimethat the spot remained at the sameindex
number was denoted as the delay in seconds. The LoDs
correspond to adelay d [0 {0.8, 0.6, 0.4} . Each level lasted for
30 seconds and occurred twice. Hereby, it has to be taken into
account that each player started with the easiest level and 2
subsequent levels could not have the same LoD. The order of
the LoDswas randomized and the game started with awarming
up phase of 60 seconds to discover the game. Table 1 shows all
10 possible permutations along with their order of LoDs.

Figure 2. Schematic overview of the roadrunner game. A-D: show the way the cube should be rotated to keep the green dot in the correct position.

E-H: show what happens in case the cube was not rotated at all.
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Table 1. All possible permutations for the roadrunner game.
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Permutation Order of levels of difficulty Participants (n)
0 0,1,2012 10
1 01,2021 10
2 0,1,21,20 10
3 0,121,02 10
4 0,2,1,012 10
5 021021 9
6 0,21,201 10
7 021210 10
8 0,1,021,2 7
9 020121 9

The goal of the maze game was to move a white dot through a
maze of green dots, as is shown in Figure 3. The dot could be
moved by rotating the cube. In case the player moved the white
dot on alocation that was green and thus not allowed to enter,
the dot turned red. When the player moved the white dot back
on the right track, the red dot returned green. The path that the
players were asked to walk through with the white spot was
created by displaying green LEDs on the cube at certain index
numbers. The game had 2 different levels of difficulty, indicated
by the index numbers that turned green and thus were not
allowed to enter with the white dot: LoD [0 {0, 1}. Level 0 was
the easiest level. Here, the player only had to push the white

dot around the corner of the toy in the middle of aside. In the
hardest level, pushing around the corner of the toy could also
have to take place at the edges of the cube. A schematic
overview of both levels of the maze game is shown in Figure
4. The path in the maze was infinite and each level lasted for
60 seconds. Similar to the roadrunner game, each level occurred
twice and the real levels were preceded to awarming up phase
of 60 seconds. No permutations could be made to randomize
the LoDs sincethere were only 2 LoDs; each game started with
the easiest level and 2 subsequent levels could not have the
same LoD.

Figure 3. Schematic overview of the maze game. A-C: show the way the cube should be rotated to correctly move the white dot through the maze. D:
shows what happens in case the white dot was moved to alocation wherein it was not allowed to enter.

>

A

V7
-

Figure 4. Schematic overview of the levels of the maze game. A: easiest level (level 0); B: hardest level (level 1).

S

Features

Before constructing features from the sensor data, we filtered
the raw sensor data. Both the acceleration data and gyroscope
datawerefiltered with alow-passfilter with a cut-off frequency

https://www.jmir.org/2021/4/e24237

8

of 4 Hz. The so-called feature jerk was calculated as the
derivative of the acceleration and indicates the smoothness of
the trandational movements. To indicate the smoothness of the
rotational movements, the derivative of the angular velocity
was calculated. For each game, we have built 1 game feature.
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The game feature for the roadrunner game is the cosine
similarity. This feature indicates how accurately a player kept
the green moving dot on the top surface of the cube. The cosine
similarity indicates the similarity between the location of the
dot and thelocation of thetop of the cube. The cosine similarity
has a range of —1 to 1, with —1 meaning opposite orientations
and 1 meaning identical orientations. Thus, for the roadrunner
game, a cosine similarity value of 1 indicates that the player
kept the cube exactly in the preferred position regarding the
location of the green dot. For the maze game, the game state
feature is the maze correctness. This feature indicates the time
that the white dot was on the correct path.

Table 2. Overview of all the features.

Bronset al

We added gender and age of the participant as general features
to the sensor and game features. Table 2 shows all the features
together with its meaning in the context, which game the feature
applies to, and what type of feature it is. For each game, the
data of the warming-up phase (ie, the first 60 seconds of each
game) were removed since the warming up was intended to
familiarize the participant with the toy and was not part of the
assessment. The mean value of a variable over time (eg, mean
acceleration, mean jerk) and standard deviation were calculated
for each sensor and game feature. Thus, we constructed 8 sensor
features, 2 game features, and 2 general features per game.

Feature name Meaning in context Game Type of feature
a Total acceleration (M/s?) Both Sensor

w Total angular velocity (rad/s) Both Sensor

Jerk Smoothness of the translational movements, derivative of a Both Sensor

a Smoothness of the rotational movements, derivative of w Both Sensor

Cosine similarity Accuracy of keeping the green dot at the preferred position Roadrunner Game

Maze correctness Time being on the correct path Maze Game

Gender Gender Both Genera

Age Ageinyears Both Genera

Classification M odels

Four different supervised machine learning algorithms were
compared: k-nearest neighbor (KNN), logistic regression (LR),
decisiontree (DT), and support vector machine (SVM). LR and
DT were selected because they provide interpretable models,
which is important for teachers who will use the toy in their
classrooms. KNN and SVM were chosen because they are
known to have good performance with nontextual data, of which
SVM often performs well with relatively little data [22]. The
labels that were used for training and testing the classification
model were the binary outcomes of the fine MABC-2. A child
who was likely to have fine motor skill development problems
according to the fine MABC-2 was denoted as 1, whileachild
not having fine motor skill devel opment problems according to
the fine MABC-2 was labeled as 0. The performance of the
classification model was analyzed with stratified 49-fold cross
validation [23]. Since our data set isrelatively small, we chose
to perform cross validation to prevent overfitting. Because the
dataset included 49 children with label 1, we performed 49-fold
cross validation to maximize the use of the available data
Ideally, the distribution of class labels is almost equal in the
training and test set. Stratified cross-validation enablesthisideal
distribution while performing cross validation [24]. Since our
data set consisted of approximately as many children with label
1 as children with label 0, each test set of afold consisted of
one child with label 1 and one child with label 0. The label of
each child was used as atest set in at |east one fold because we
performed 49-fold cross validation and the data set contained
49 children with label 1. Sincethe data set included 46 children
with label O, the data of 3 children were reused in the test set
of another fold to enable stratified cross-validation.

https://www.jmir.org/2021/4/e24237

Comparing Perfor mances

In the first analysis, the games and classifiers were compared.
We trained and tested 4 different machine learning algorithms
on all features of the roadrunner game and all features of the
maze game. We used accuracy to indicate the percentage of the
correctly classified cases. Asan additional performance metric,
we used the F1 score sinceit considers both precision and recall
and these are both important in an assessment tool. Precision
indicates the proportion of cases labeled positive that were
actually correct, whereasrecall indicatesthe proportion of actual
positive cases that were labeled correctly. Wilcoxon tests were
performed to show whether the best performing classifier
performed significantly better than the other 3 classifiers.
Moreover, Wilcoxon tests were performed to show the
differences between the roadrunner game and the maze game
for each classifier. For all statistical tests, we used a=.05. The
gameand classifier that performed best were used in the second
analysis. Here, we compared the LoDs and the type of input
features. For each possible combination of LoDs of the
roadrunner game, we trained and tested the best performing
classifier on the sensor features, the game features, and both
sensor and game features. The general features such asage and
gender were alwaysincluded as classifier input. Wilcoxon tests
were performed to show whether the best performing
combination of the levels performed significantly better than
the other combinations of levels. Furthermore, Wilcoxon tests
were performed to show whether there were differences between
the type of features for the best performing combination of
levels.
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Results

Participant Characteristics

In total, 95 children (52 girls and 43 boys) participated. Their
mean age was 7.8 (SD 0.7) years. Based on the fine MABC-2
scores, 49 children showed problemswith their fine motor skills,
while 46 children did not have fine motor skill problems. Thus,
the group of children having fine motor skill problems according
to the fine MABC-2 score and the group of children not having
fine motor skill problems were amost equal in number. Since
we deliberately included urban elementary schools having a
larger population of children with motor skill problems, this
ratio is higher than the typical percentage of 5%-10% of the
children having motor skill problems[5,6].

Bronset al

Effects of the Games and Classifiers

The DT classifier with only features of the roadrunner game as
input performed best with a mean accuracy score of 0.68 and a
mean F1 score of 0.65. The corresponding mean recall score
was 0.74. The DT classifier also performed best for the maze
game with a mean accuracy score of 0.52, a mean F1 score of
0.44, and a mean recall score of 0.51. For all classifiers, the
highest mean accuracy and mean F1 scores were achieved with
features of the roadrunner game used as input. An overview of
all mean accuracy and mean F1 scores per game and machine
learning algorithm is shown in Figure 5.

Although the DT classifier achieved higher accuracy and F1
scores than the other 3 classifiers for both the roadrunner and
the maze games, no significant differences were found. All
results of the performed Wilcoxon tests to study differences
between the DT and the other classifiers are shown in Table 3.

Figure5. Mean accuracy and mean F1 scoresfor the comparison of the classifiersand games. DT: decision tree; KNN: k-nearest neighbor; LR: logistic

regression; SVM: support vector machine.
1
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Table 3. Results of the Wilcoxon tests when the performance scores of the decision tree classifier were compared with those of the other classifiers.

Classifier Accuracy (P value) F1 score (P value)

Roadrunner game Maze game Roadrunner game Maze game
k-nearest neighbor 42 15 41 A4
Logistic regression .35 .62 18 .90
Support vector machine .08 .26 .08 .23

Each classifier performed significantly better on accuracy with
data obtained from playing the roadrunner game than with that
obtained from playing the maze game (DT, P=.03; KNN, P=.01,;
LR, P=.02; SVM, P=.04). Except for the SVM classifier, each
classifier also performed significantly better on the F1 score

https://www.jmir.org/2021/4/e24237

RenderX

with data obtained from playing the roadrunner game than with
data obtained from playing the maze game (DT, P=.02; KNN,
P=.01; LR, P=.049). Table 4 shows al the results of the
performed Wilcoxon tests to show differences between data
obtained from playing the roadrunner game and the maze game.
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the roadrunner game were compared with those of the maze game for all

Classifier Accuracy (P value) F1 score (P value)
Decision tree 032 02?2

k-nearest neighbor 012 012

Logistic regression 022 0492

Support vector machine 042 .20

Djfferences were statistically significant at P<.05.

Influence of the Game L evels and Features

The DT classifier with features of only the roadrunner game as
input was used to compare the types of input features and
combinations of levels since the combination of this classifier
and game performed best inthefirst analysis. The highest mean
accuracy, being 0.76, was achieved with a combination of data
obtained from playing level 0 and level 2 and acombination of
both sensor and gamefeatures. The corresponding mean F1 and
recall scores were 0.67 and 0.71, respectively. The best mean
F1 score, being 0.70, was achieved with the combination of
level 1 and level 2 and only using game features. The
corresponding mean accuracy and recall scores were 0.65 and

0.80, respectively. Figure 6 shows an overview of all mean
accuracy and mean F1 scores per combination of levels and
type of input features achieved with the DT classifier and data
of the roadrunner game. Since the combination of data obtained
from playing levels 0 and 2 with both sensor and game features
achieved the highest mean accuracy, we compared levels 0 and
2 with the other combinations of levels. The combination of
level 0 and level 2 only performed significantly better than the
combination of level 0 and level 1 when both sensor and game
features were used as input (P=.046). All results of the
performed Wilcoxon tests to study differences between the
combination of levels with both sensor and game features used
asinput are shown in Table 5.

Figure 6. Mean accuracy and F1 scores for the comparison of the levels and types of input features.
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Table 5. Results of the Wilcoxon tests when the performance scores of game level 0 and level 2 were compared with those of the other levels?

Game level Accuracy (P value) F1 score (P value)
Level O .38 54
Level 1 21 .52
Level 2 A1 .92
Level 0+ 1 046° 10
Level 1+2 21 52
Level 0+1+2 .20 81

% n all cases, decision tree was used as the classifier and both sensor and game features of the roadrunner game were used as input.

bpifferences were statistical ly significant at P<.05.

For all combinations of levels, the combination of both sensor
and game features performed better regarding accuracy than
only one of those features. When zooming in on the best
performing combination of levels, that is, level 0 and level 2,
we found asignificant difference in the accuracy and F1 scores

between using both types of features and using only sensor
features (accuracy, P=.001; F1 score, P=.01). Theresults of the
performed Wil coxon teststo study differences between thetype
of input features for the combination of level O and level 2 are
shown in Table 6.

Table 6. Results of the Wilcoxon tests when the performance scores of the types of input features were compared.?

Input feature Accuracy (P value) F1 score (P value)
Both features versus only sensor features 001° 01°

Both features versus only game features .18 .06

Sensor versus game .10 91

8 n all cases, decision tree was used as the classifier and both data from game level 0 and level 2 were used for the input features.

bDifferences were statistical ly significant at P<.05.

Discussion

Principal Results

By comparing the classifiers and games, we learned that the
game focusing on speed was more suitable for predicting the
motor skill level than the game focusing on precision. Data
obtained from playing the roadrunner game led to significantly
better performances than data obtained from playing the maze
game. Thus, adding the game focusing on precision did not
improve our preliminary results. The important contribution of
the roadrunner data to the classification performance may be
explained by the fact that speed is an important component in
theMABC-2 aswell. Two out of 3 subtests of thefineMABC-2
are time-sensitive. These findings correspond to the results of
Rivera et al [18], who showed that the time for completing a
task was an important component for intraindividual variability
with their tested sensor-augmented toy.

By comparing the types of data and the LoDs, we learned that
the combination of both sensor and game features was the most
suitablefor predicting the motor skill level. For the combination
of data obtained from playing level 0 and level 2, using both
sensor and game features led to a dignificantly better
performance than only using sensor features. Although the
contribution of the sensor featuresto the performance was shown
to be little, the addition of the gyroscope data led to improved
results compared to our preliminary results[9]. The significant
difference between using both sensor and game features and

https://www.jmir.org/2021/4/e24237

only using sensor features for the best performing combination
of levelsisinteresting. This means that the game component of
the assessment approach is not only beneficial for playfulness
but it also plays an important rolein the prediction of the motor
skill level itself together with the sensor data. An interesting
follow-up project could be to generate additional game features
or design more speed-based games and study how they affect
the prediction of the fine MABC-2 score. The fact that no
significant differences were found between the DT classifier
and the other 3 classifiers indicates that the selection of input
features has more impact on the performance than the selection
of the classifier. Although the DT classifier did not perform
significantly better, it is preferred over the KNN and SVM
algorithms since it gives insight into the classification process.
Thisisan important characteristic for the teacherswho will use
the toy in their classrooms.

Strengths, Limitations, and Opportunities

The best achieved accuracy of 0.76 and F1 score of 0.70 on
predicting the label of the fine MABC-2 are promising for
assessing children’s motor skills with sensor-augmented toys.
Since the cube is easy to use in the classroom, it is relatively
easy to collect data. Therefore, the current approach might not
only be useful for one-time assessment but could also be used
for monitoring. Although we predicted the outcome of the fine
MABC-2 and this assessment indicates whether children have
fine motor development problems or not, we cannot state that
we can predict children’s fine motor skill level with playing

JMed Internet Res 2021 | vol. 23 | iss. 4 | €24237 | p. 9
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH

games with the Futuro Cube. To do so, we should repeat our
research and replace the fine MABC-2 |abels with expert view
labels of the motor skill level. Moreover, assessment with the
Futuro Cube only indicates whether children might have fine
motor development problems in general. However, fine motor
development is complex and consists of several aspects.
Important factorsare, for instance, cognitive ability, anticipatory
control, motor planning function, and spatial ability [4]. Since
all of thesefactorsareincluded in thetasks of thefineMABC-2,
we included them in the games of the Futuro Cube as well.
Thus, our toy only signals motor development problems in
general but does not assess specific aspects of motor
development. In case the assessment tool showed that a child
waslikely to have fine motor devel opment problems, follow-up
examination is required to investigate individual aspects or
causes of fine motor development problems.

The current approach might not only be useful for assessment
but might also be useful as afirst screening tool. In that case,
children who are not likely to have motor problems are already
being filtered out with the results of the game. A valid and
reliably fine motor skill assessment test such as the fine
MABC-2 can be taken for the children who were likely to have
fine motor skill problems based on the game results. That way,
not all children haveto takethefine MABC-2 test, and thefalse
positives of the assessment with the toy can be filtered out
afterwards.

Another promising opportunity of the Futuro Cube is using it
for training instead of monitoring. Developing a valid and
reliable assessment toy will take some time, but playing with
the Futuro Cube might also be useful for training purposes.
Children could train their fine motor skillswhile playing games
with thetoy. Thiscould be valuablefor both children with motor
skill problems without having specific disorders as well as
children with, for instance, cerebral palsy or fine motor problems
after a stroke. For learning, fun is an important factor since it
improves intrinsic motivation and focus [25]. It is shown that

Bronset al

gamified training is highly engaging and boosts the motivation
of players[12]. Therefore, such a playful way of training their
motor skillswould be avaluable addition to the current methods.
When the toy is ready for assessment, it could also be used to
monitor progress in therapy or rehabilitation of such children.
Since data are wirelessly sent in real time to a computer, such
training opportunities could be improved by making the game
adaptive. The level could be fitted to the child's capacities,
which improvesthe attention span and motivation. In this study,
wefocused on predicting the outcome of the fine MABC-2, but
we did not include feasibility and usability in our approach.
Although we did not study playfulnessfor children and usability
for teachers in our approach, both children and teachers were
very enthusiastic and their informal responses were, without
exception, positive.

Conclusions

This study examined the possibilities of using sensor-augmented
toys to assess children’s fine motor skills. Such toys are less
time-consuming and more playful and motivating than the
current assessment methods. Compared to our preliminary
research, we added the gyroscope for extra sensor data and an
extragame that focused on precision instead of speed. With the
best achieved accuracy of 0.76 and F1 score of 0.70, we showed
that sensor-augmented toys can efficiently predict the outcome
of the fine MABC-2 score. The selection of features is more
important for the performance than the selection of the machine
learning classifier. Classifiers that used input features obtained
from playing the game focusing on speed performed
significantly better that classifiers that used input features
obtained from playing the game focusing on precision. Although
our findings are a good start, further research is needed to
develop areliable and valid playful assessment tool. Possible
improvements may be generating more gamefeatures, designing
more speed-based games, and making the LoDs adaptive. Such
adaptive games may aso be valuable for training or
rehabilitation purposes.
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